Home
Class 12
MATHS
If vec(a) + vec(b) + vec( c ) = vec(0), ...

If `vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b)| =3` and `| vec( c)| =4`, then the angle between `vec(b)` and `vec(c )` is

A

`90^(@)`

B

`60^(@)`

C

`45^(@)`

D

`30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation and the magnitudes of the vectors: 1. **Given Equation**: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \] This implies: \[ \vec{a} = -(\vec{b} + \vec{c}) \] 2. **Magnitudes**: - \(|\vec{a}| = \sqrt{37}\) - \(|\vec{b}| = 3\) - \(|\vec{c}| = 4\) 3. **Squaring the Magnitudes**: We can square both sides of the equation: \[ |\vec{a}|^2 = |\vec{b} + \vec{c}|^2 \] Expanding the right side using the formula \(|\vec{x} + \vec{y}|^2 = |\vec{x}|^2 + |\vec{y}|^2 + 2\vec{x} \cdot \vec{y}\): \[ |\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 + 2 \vec{b} \cdot \vec{c} \] 4. **Substituting the Values**: Now substituting the known values: \[ 37 = 3^2 + 4^2 + 2 \vec{b} \cdot \vec{c} \] Calculating the squares: \[ 37 = 9 + 16 + 2 \vec{b} \cdot \vec{c} \] Simplifying: \[ 37 = 25 + 2 \vec{b} \cdot \vec{c} \] Rearranging gives: \[ 2 \vec{b} \cdot \vec{c} = 37 - 25 \] \[ 2 \vec{b} \cdot \vec{c} = 12 \] Thus: \[ \vec{b} \cdot \vec{c} = 6 \] 5. **Using the Dot Product**: The dot product can also be expressed in terms of the magnitudes and the cosine of the angle \(\theta\) between the vectors: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \theta \] Substituting the magnitudes: \[ 6 = 3 \cdot 4 \cos \theta \] Simplifying: \[ 6 = 12 \cos \theta \] Thus: \[ \cos \theta = \frac{6}{12} = \frac{1}{2} \] 6. **Finding the Angle**: The angle \(\theta\) can be found using the inverse cosine: \[ \theta = \cos^{-1} \left( \frac{1}{2} \right) \] This gives: \[ \theta = 60^\circ \] **Final Answer**: The angle between \(\vec{b}\) and \(\vec{c}\) is \(60^\circ\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If vec(A) + vec(B) = vec(C ) and A + B = C , then the angle between vec(A) and vec(B) is :

Given that vec(A)+vec(B)=vec(C ) . If |vec(A)|=4, |vec(B)|=5 and |vec(C )|=sqrt(61) , the angle between vec(A) and vec(B) is

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

If vec a+ vec b+ vec c=0 and | vec a|=3,\ | vec b|=5 and | vec c|=7 , show that the angle between vec a and vec b is 60^0 .

If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b)|=3,|vec(c )|=4 and angle between vec(b) and vec( c) is ( 2pi )/( 3) , then [ vec(a)"" vec( b) "" vec( c)] is equal to

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

Given that vec(A)+vec(B)=vec(C ) and that vec(C ) is perpendicular to vec(A) Further if |vec(A)|=|vec(C )| , then what is the angle between vec(A) and vec(B)

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is

If vec A cdot vec B =0 and vec A xx vec C=0 , then the angle between B and C is

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  2. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  3. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  4. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  5. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  6. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  7. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  8. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  9. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  10. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  11. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  12. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  13. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  14. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  15. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  16. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  17. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  18. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  19. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  20. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |