Home
Class 12
MATHS
The number of unit vectors perpendicular...

The number of unit vectors perpendicular to the vector `vec(a) = 2 hat(i) + hat(j) + 2 hat(k)` and `vec(b) = hat(j) + hat(k)` is

A

one

B

two

C

three

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of unit vectors perpendicular to the vectors \(\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}\) and \(\vec{b} = \hat{j} + \hat{k}\), we can follow these steps: ### Step 1: Find the Cross Product of \(\vec{a}\) and \(\vec{b}\) The cross product \(\vec{a} \times \vec{b}\) will give us a vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\). \[ \vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \] \[ \vec{b} = 0\hat{i} + \hat{j} + \hat{k} \] Using the determinant method for the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 2 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = (1)(1) - (2)(1) = 1 - 2 = -1\) 2. \(\begin{vmatrix} 2 & 2 \\ 0 & 1 \end{vmatrix} = (2)(1) - (2)(0) = 2 - 0 = 2\) 3. \(\begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = (2)(1) - (1)(0) = 2 - 0 = 2\) Putting it all together: \[ \vec{a} \times \vec{b} = -1\hat{i} - 2\hat{j} + 2\hat{k} = -\hat{i} - 2\hat{j} + 2\hat{k} \] ### Step 2: Find the Magnitude of the Cross Product Now we find the magnitude of \(\vec{a} \times \vec{b}\): \[ |\vec{a} \times \vec{b}| = \sqrt{(-1)^2 + (-2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] ### Step 3: Find the Unit Vectors The unit vectors perpendicular to both \(\vec{a}\) and \(\vec{b}\) can be found by dividing the cross product by its magnitude: \[ \text{Unit vector} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \frac{-\hat{i} - 2\hat{j} + 2\hat{k}}{3} \] This results in: \[ \text{Unit vector} = -\frac{1}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k} \] ### Step 4: Consider the Negative Unit Vector Since the question asks for the number of unit vectors, we also have the negative of the unit vector: \[ \text{Negative unit vector} = \frac{1}{3}\hat{i} + \frac{2}{3}\hat{j} - \frac{2}{3}\hat{k} \] ### Conclusion Thus, there are **two unit vectors** that are perpendicular to both \(\vec{a}\) and \(\vec{b}\). ### Final Answer The number of unit vectors perpendicular to \(\vec{a}\) and \(\vec{b}\) is **2**. ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along the vector vec(b) = hat(i) + 2 hat(j)+ 2hat(k) is

Write the number of vectors of unit length perpendicular to both the vectors vec a=2 hat i+ hat j+2 hat k and vec b= hat j+ hat k

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find a vector perpendicular to vector vec(A)=(hat(i)+2hat(j)-3hat(k)) as well as vec(B)=(hat(i)+hat(j)-hat(k))

Find the unit vector perpendicular to the plane vec rdot(2 hat i+ hat j+2 hat k)=5.

A unit vector in the dirction of resultant vector of vec(A)= -2hat(i)+3hat(j)+hat(k) and vec(B)= hat(i)+2hat(j)-4hat(k) is

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

If vec(A) and vec(B) are perpendicular Vectors and vector vec(A)= 5hat(i)+7hat(j)-3hat(k) and vec(B)= 2hat(i)+2hat(j)-ahat(k) . The value of a is

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  2. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  3. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  4. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  5. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  6. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  7. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  8. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  9. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  10. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  11. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  12. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  13. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  14. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  15. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  16. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  17. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  18. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  19. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  20. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |