Home
Class 12
MATHS
Unit vectors perpendicular to the plane ...

Unit vectors perpendicular to the plane of vectors `vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k)` and `vec(b) = 4 hat(i) + 3 hat(j) - hat(k)` are

A

`+- ( 4 hat(i) + 3 hat(j) - hat(k))/(sqrt(26))`

B

`+- ( 2 hat(i) - 6 hat(j) - 3 hat(k))/( 7)`

C

`+- ( 2 hat(i) - 3 hat(j) +6 hat(k))/( 7)`

D

`+- ( 3 hat(i) -2 hat(j) + 6 hat(k))/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vectors perpendicular to the plane of the vectors \(\vec{a} = 2 \hat{i} - 6 \hat{j} - 3 \hat{k}\) and \(\vec{b} = 4 \hat{i} + 3 \hat{j} - \hat{k}\), we will follow these steps: ### Step 1: Calculate the cross product \(\vec{a} \times \vec{b}\) The cross product of two vectors \(\vec{a}\) and \(\vec{b}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix} \] ### Step 2: Expand the determinant Using the determinant formula, we have: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} = (-6)(-1) - (-3)(3) = 6 + 9 = 15 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} = (2)(-1) - (-3)(4) = -2 + 12 = 10 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix} = (2)(3) - (-6)(4) = 6 + 24 = 30 \] Putting it all together, we have: \[ \vec{a} \times \vec{b} = 15 \hat{i} - 10 \hat{j} + 30 \hat{k} \] ### Step 3: Calculate the magnitude of \(\vec{a} \times \vec{b}\) The magnitude of the cross product is given by: \[ |\vec{a} \times \vec{b}| = \sqrt{15^2 + (-10)^2 + 30^2} \] Calculating each term: \[ 15^2 = 225, \quad (-10)^2 = 100, \quad 30^2 = 900 \] Thus, \[ |\vec{a} \times \vec{b}| = \sqrt{225 + 100 + 900} = \sqrt{1225} = 35 \] ### Step 4: Find the unit vector The unit vector perpendicular to the plane of \(\vec{a}\) and \(\vec{b}\) is given by: \[ \hat{n} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \] Substituting the values we calculated: \[ \hat{n} = \frac{15 \hat{i} - 10 \hat{j} + 30 \hat{k}}{35} \] This simplifies to: \[ \hat{n} = \frac{15}{35} \hat{i} - \frac{10}{35} \hat{j} + \frac{30}{35} \hat{k} = \frac{3}{7} \hat{i} - \frac{2}{7} \hat{j} + \frac{6}{7} \hat{k} \] Thus, the unit vectors perpendicular to the plane of \(\vec{a}\) and \(\vec{b}\) are: \[ \hat{n} = \pm \left( \frac{3}{7} \hat{i} - \frac{2}{7} \hat{j} + \frac{6}{7} \hat{k} \right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Show that the vectors vec(A) = 2 hat(i) - 3 hat(j)-1hat(k) and vec(B) = - 6hat(i) +9 hat(j) +3 hat(k) are parallel .

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) on the vector vec(Q) = hat(i) + 2hat(j) + 2hat(k)

Find a unit vector perpendicular to the plane containing the vectors vec a=2 hat i+ hat j+ hat k\ a n d\ vec b= hat i+2 hat j+ hat kdot

Show that the two vectors vec(A) and vec(B) are parallel , where vec(A) = hat(i) + 2 hat(j) + hat(k) and vec(B) = 3 hat(i) + 6 hat(j) + 3 hat(k)

Determine lambda such that a vector vec(r) is at right angles to each of the vectors vec(a) = lambda hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - lambda hat(k), vec(c) = -2hat(i) + lambda hat(j) + 3hat(k) .

If vec(A) and vec(B) are perpendicular Vectors and vector vec(A)= 5hat(i)+7hat(j)-3hat(k) and vec(B)= 2hat(i)+2hat(j)-ahat(k) . The value of a is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Write the value of lamda so that the vectors vec(a)= 2hat(i) + lamda hat(j) + hat(k) and vec(b)= hat(i) - 2hat(j) + 3hat(k) are perpendicular to each other?

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  2. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  3. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  4. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  5. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  6. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  7. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  8. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  9. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  10. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  11. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  12. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  13. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  14. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  15. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  16. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  17. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  18. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  19. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  20. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |