Home
Class 12
MATHS
A vector of magnitude 5 and perpendicula...

A vector of magnitude 5 and perpendicular to `hat(i) - 2 hat(j) + hat(k)` and `2 hat(i) + hat(j) - 3 hat(k)` is

A

`(5 sqrt(3) ( hat(i) + hat(j) + hat(k)))/( 3)`

B

`(5 sqrt(3) ( hat(i) - hat(j) + hat(k)))/( 3)`

C

`(5 sqrt(3) ( hat(i) - hat(j) - hat(k)))/( 3)`

D

`(5 sqrt(3) ( hat(i) + hat(j) - hat(k)))/( sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding a vector of magnitude 5 that is perpendicular to the vectors \( \hat{i} - 2\hat{j} + \hat{k} \) and \( 2\hat{i} + \hat{j} - 3\hat{k} \), we can follow these steps: ### Step 1: Define the vectors Let: \[ \mathbf{a} = \hat{i} - 2\hat{j} + \hat{k} \] \[ \mathbf{b} = 2\hat{i} + \hat{j} - 3\hat{k} \] ### Step 2: Calculate the cross product To find a vector that is perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \), we compute the cross product \( \mathbf{c} = \mathbf{a} \times \mathbf{b} \). Using the determinant method for the cross product: \[ \mathbf{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ 2 & 1 & -3 \end{vmatrix} \] ### Step 3: Compute the determinant Calculating the determinant: \[ \mathbf{c} = \hat{i} \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} = (-2)(-3) - (1)(1) = 6 - 1 = 5 \) 2. \( \begin{vmatrix} 1 & 1 \\ 2 & -3 \end{vmatrix} = (1)(-3) - (1)(2) = -3 - 2 = -5 \) 3. \( \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-2)(2) = 1 + 4 = 5 \) Putting it all together: \[ \mathbf{c} = 5\hat{i} + 5\hat{j} + 5\hat{k} \] ### Step 4: Find the magnitude of \( \mathbf{c} \) The magnitude of \( \mathbf{c} \) is: \[ |\mathbf{c}| = \sqrt{5^2 + 5^2 + 5^2} = \sqrt{25 + 25 + 25} = \sqrt{75} = 5\sqrt{3} \] ### Step 5: Find the unit vector in the direction of \( \mathbf{c} \) The unit vector \( \mathbf{u} \) in the direction of \( \mathbf{c} \) is: \[ \mathbf{u} = \frac{\mathbf{c}}{|\mathbf{c}|} = \frac{5\hat{i} + 5\hat{j} + 5\hat{k}}{5\sqrt{3}} = \frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) \] ### Step 6: Scale the unit vector to the desired magnitude To find a vector of magnitude 5 in the direction of \( \mathbf{u} \): \[ \mathbf{d} = 5 \cdot \mathbf{u} = 5 \cdot \frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) = \frac{5}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) \] ### Final Result Thus, the vector of magnitude 5 that is perpendicular to both given vectors is: \[ \mathbf{d} = \frac{5}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

A vector perpendicular to hat(i)+hat(j)+hat(k) is

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find a vector of magnitude 15, which is perpendicular to both the vectors (4hat(i) -hat(j)+8hat(k)) and (-hat(j)+hat(k)).

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Find a vector of magnitude 9, which is perpendicular to both vectors 4 hat i- hat j+3 hat ka n d-2 hat i+ hat j-2 hat k .

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + hat(k) and hat(i) + 2 hat(j) + 3 hat(k) are perpendicular is

Find a vector of magnitude 49, which is perpendicular to both the vectors 2 hat i+3 hat j+6 hat k and 3 hat i-6 hat j+2 hat k . Find a vector whose length is 3 and which is perpendicular to the vector vec a=3 hat i+ hat j-4 hat k and vec b=6 hat i+5 hat j-2 hat k .

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |