Home
Class 12
MATHS
The vectors from origin to the points A ...

The vectors from origin to the points A and B are `vec(a) = 2 hat(i) - 3 hat(j) + 2 hat(k)` and `vec( b) = 2 hat(i) + 3 hat(j) + hat(k)`, respectively, then the area ( in sq. units ) of `Delta ABC` is

A

`sqrt( 340)`

B

5

C

`sqrt(229)`

D

`(1)/(2) sqrt( 229)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle ABC formed by the points A, B, and the origin O, we can use the formula for the area of a triangle given by vectors. The area \( \text{Area} \) of triangle ABC can be calculated using the formula: \[ \text{Area} = \frac{1}{2} \| \vec{AB} \times \vec{AC} \| \] Where \( \vec{AB} \) and \( \vec{AC} \) are the vectors from A to B and from A to C, respectively. In this case, we can take point C as the origin O. ### Step 1: Define the vectors The vectors from the origin to points A and B are given as: \[ \vec{A} = 2\hat{i} - 3\hat{j} + 2\hat{k} \] \[ \vec{B} = 2\hat{i} + 3\hat{j} + \hat{k} \] ### Step 2: Find the vector \( \vec{AB} \) The vector \( \vec{AB} \) is calculated as: \[ \vec{AB} = \vec{B} - \vec{A} \] Calculating this gives: \[ \vec{AB} = (2\hat{i} + 3\hat{j} + \hat{k}) - (2\hat{i} - 3\hat{j} + 2\hat{k}) = 0\hat{i} + 6\hat{j} - 1\hat{k} = 6\hat{j} - \hat{k} \] ### Step 3: Find the vector \( \vec{AC} \) The vector \( \vec{AC} \) is simply the vector \( \vec{A} \) since C is the origin: \[ \vec{AC} = \vec{A} = 2\hat{i} - 3\hat{j} + 2\hat{k} \] ### Step 4: Calculate the cross product \( \vec{AB} \times \vec{AC} \) We will calculate the cross product using the determinant of a matrix: \[ \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 6 & -1 \\ 2 & -3 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 6 & -1 \\ -3 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & -1 \\ 2 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 6 \\ 2 & -3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ 6 \cdot 2 - (-1)(-3) = 12 - 3 = 9 \] 2. For \( -\hat{j} \): \[ 0 \cdot 2 - (-1)(2) = 0 + 2 = 2 \] 3. For \( \hat{k} \): \[ 0 \cdot (-3) - 6 \cdot 2 = 0 - 12 = -12 \] Putting it all together: \[ \vec{AB} \times \vec{AC} = 9\hat{i} - 2\hat{j} - 12\hat{k} \] ### Step 5: Calculate the magnitude of the cross product Now we find the magnitude: \[ \| \vec{AB} \times \vec{AC} \| = \sqrt{9^2 + (-2)^2 + (-12)^2} = \sqrt{81 + 4 + 144} = \sqrt{229} \] ### Step 6: Calculate the area of triangle ABC Finally, we can find the area: \[ \text{Area} = \frac{1}{2} \| \vec{AB} \times \vec{AC} \| = \frac{1}{2} \sqrt{229} \] Thus, the area of triangle ABC is: \[ \text{Area} = \frac{1}{2} \sqrt{229} \text{ square units} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k) respectively. Find the area of : (i) the triangle OAB (ii) the parallelogram formed by vec(OA) and vec(OB) as adjacent sides.

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

The area of a triangle formed by vertices O,A and B where vec(OA) = hat(i) + 2 hat(j) + 3 hat(k) and vec(OB) = - 3hat(i) - 2 hat(j) + hat(k) is

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Show that the two vectors vec(A) and vec(B) are parallel , where vec(A) = hat(i) + 2 hat(j) + hat(k) and vec(B) = 3 hat(i) + 6 hat(j) + 3 hat(k)

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

A unit vector in the dirction of resultant vector of vec(A)= -2hat(i)+3hat(j)+hat(k) and vec(B)= hat(i)+2hat(j)-4hat(k) is

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |