Home
Class 12
MATHS
The area ( in sq. units ) of the triang...

The area ( in sq. units ) of the triangle having vertices with position vectors `hat(i) - 2 hat(j) +3 hat(k), - 2 hat(i) + 3 hat(j) - hat(k)` and `4 hat(i)- 7 hat(j) + 7 hat(k)` is

A

36

B

0

C

39

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the given position vectors, we can follow these steps: ### Step 1: Identify the position vectors Let the position vectors of the vertices of the triangle be: - \( \mathbf{A} = \hat{i} - 2\hat{j} + 3\hat{k} \) - \( \mathbf{B} = -2\hat{i} + 3\hat{j} - \hat{k} \) - \( \mathbf{C} = 4\hat{i} - 7\hat{j} + 7\hat{k} \) ### Step 2: Calculate the vectors \( \mathbf{AB} \) and \( \mathbf{BC} \) The vector \( \mathbf{AB} \) is given by: \[ \mathbf{AB} = \mathbf{B} - \mathbf{A} = (-2\hat{i} + 3\hat{j} - \hat{k}) - (\hat{i} - 2\hat{j} + 3\hat{k}) \] Calculating this: \[ \mathbf{AB} = (-2 - 1)\hat{i} + (3 + 2)\hat{j} + (-1 - 3)\hat{k} = -3\hat{i} + 5\hat{j} - 4\hat{k} \] The vector \( \mathbf{BC} \) is given by: \[ \mathbf{BC} = \mathbf{C} - \mathbf{B} = (4\hat{i} - 7\hat{j} + 7\hat{k}) - (-2\hat{i} + 3\hat{j} - \hat{k}) \] Calculating this: \[ \mathbf{BC} = (4 + 2)\hat{i} + (-7 - 3)\hat{j} + (7 + 1)\hat{k} = 6\hat{i} - 10\hat{j} + 8\hat{k} \] ### Step 3: Calculate the cross product \( \mathbf{AB} \times \mathbf{BC} \) To find the area of the triangle, we need to compute the cross product \( \mathbf{AB} \times \mathbf{BC} \): \[ \mathbf{AB} \times \mathbf{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 5 & -4 \\ 6 & -10 & 8 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 5 & -4 \\ -10 & 8 \end{vmatrix} - \hat{j} \begin{vmatrix} -3 & -4 \\ 6 & 8 \end{vmatrix} + \hat{k} \begin{vmatrix} -3 & 5 \\ 6 & -10 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 5 & -4 \\ -10 & 8 \end{vmatrix} = (5)(8) - (-4)(-10) = 40 - 40 = 0 \) 2. \( \begin{vmatrix} -3 & -4 \\ 6 & 8 \end{vmatrix} = (-3)(8) - (-4)(6) = -24 + 24 = 0 \) 3. \( \begin{vmatrix} -3 & 5 \\ 6 & -10 \end{vmatrix} = (-3)(-10) - (5)(6) = 30 - 30 = 0 \) Thus, \[ \mathbf{AB} \times \mathbf{BC} = 0\hat{i} - 0\hat{j} + 0\hat{k} = \mathbf{0} \] ### Step 4: Calculate the area of the triangle The area \( A \) of triangle \( ABC \) is given by: \[ A = \frac{1}{2} |\mathbf{AB} \times \mathbf{BC}| \] Since \( \mathbf{AB} \times \mathbf{BC} = \mathbf{0} \): \[ A = \frac{1}{2} \cdot 0 = 0 \] ### Conclusion The area of the triangle is \( 0 \) square units, which implies that the points are collinear. ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If three points A, B and C with position vectors hat(i) + x hat(j) +3 hat(k) , 3 hat(i) + 4 hat(j) + 7hat( k) and y hat(i) - 2 hat(j) - 5 hat(k) respectively are collinear, then (x,y) =

Find the value of lamda , if the points with position vectors 3hat(i)- 2hat(j)- hat(k), 2hat(i) + 3hat(j)- 4hat(k), -hat(i) + hat(j) + 2hat(k), 4hat(i) + 5hat(j) + lamda hat(k) are coplanar.

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

The area ( in sq. units ) of a parallelogram whose adjacent sides are given by the vectors vec( i) + hat(k) and 2 hat(i) + hat(j) + hat(k) is

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) , hat(i) - 3 hat(j) - 5hat(k) and alpha hat(i) - 3 hat(j) + hat(k) respectively are the vertices of a right-anged triangle with /_C = ( pi )/( 2) , then the values of alpha are

The area of a triangle formed by vertices O,A and B where vec(OA) = hat(i) + 2 hat(j) + 3 hat(k) and vec(OB) = - 3hat(i) - 2 hat(j) + hat(k) is

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |