Home
Class 12
MATHS
The value ( in cubic units ) of the para...

The value ( in cubic units ) of the parallelopiped whose coterminus edges are given by the vectors `vec(i)-vec(j)+hat(k),2hat(i)-4hat(j)+5hat(k)` and `3 hat(i) -5 hat(j) + 2hat(k)` is

A

2

B

3

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the vectors \(\vec{a} = \hat{i} - \hat{j} + \hat{k}\), \(\vec{b} = 2\hat{i} - 4\hat{j} + 5\hat{k}\), and \(\vec{c} = 3\hat{i} - 5\hat{j} + 2\hat{k}\), we will calculate the scalar triple product, which can be represented as the determinant of a 3x3 matrix formed by these vectors. ### Step 1: Write the vectors in matrix form We can represent the vectors as follows: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & -4 & 5 \\ 3 & -5 & 2 \end{vmatrix} \] ### Step 2: Calculate the determinant The volume \(V\) of the parallelepiped is given by the absolute value of the determinant of the matrix formed by the vectors: \[ V = \left| \begin{vmatrix} 1 & -1 & 1 \\ 2 & -4 & 5 \\ 3 & -5 & 2 \end{vmatrix} \right| \] To calculate this determinant, we can use the formula for the determinant of a 3x3 matrix: \[ \text{det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] In our case: - \(a = 1, b = -1, c = 1\) - \(d = 2, e = -4, f = 5\) - \(g = 3, h = -5, i = 2\) Calculating the determinant: \[ \text{det} = 1((-4)(2) - (5)(-5)) - (-1)((2)(2) - (5)(3)) + 1((2)(-5) - (-4)(3)) \] Calculating each term step by step: 1. First term: \[ 1((-4)(2) - (5)(-5)) = 1(-8 + 25) = 1(17) = 17 \] 2. Second term: \[ -(-1)((2)(2) - (5)(3)) = 1(4 - 15) = 1(-11) = -11 \] 3. Third term: \[ 1((2)(-5) - (-4)(3)) = 1(-10 + 12) = 1(2) = 2 \] Now, summing these results: \[ \text{det} = 17 - 11 + 2 = 8 \] ### Step 3: Conclusion Thus, the volume of the parallelepiped is: \[ V = |8| = 8 \text{ cubic units} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

The area ( in sq. units ) of a parallelogram whose adjacent sides are given by the vectors vec( i) + hat(k) and 2 hat(i) + hat(j) + hat(k) is

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the altitude of a parallelopiped whose three conterminous edges are verctors A=hat(i)+hat(j)+hat(k), B=2hat(i)+4hat(j)-hat(k) and C=hat(i)+hat(j)+3hat(k) with A and B as the sides of the base of the parallelopiped.

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: i, vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k ii, vec a=2 hat i-3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k iii, vec a=11 hat i , vec b=2 hat j , vec c=13 hat k iv, vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the area of the parallelogram whose diagonals are determined by vectors vec(a)= 3hat(i) + hat(j)-2hat(k) and vec(b)= hat(i) - 3hat(j) + 4hat(k)

The angle between the two Vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)-5hat(k) will be

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i+3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j+2 hat k .

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |