Home
Class 12
MATHS
If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k...

If `vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k)` and `vec(c ) = hat(i) + lambda hat(j) + 3 hat(k)` are coplanar , then the values of `lambda ` is

A

`-(5)/(2)`

B

`(5)/(3)`

C

`(3)/(5)`

D

`- ( 5)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar. The vectors are given as: \[ \vec{a} = 2 \hat{i} - 3 \hat{j} + 2 \hat{k} \] \[ \vec{b} = 2 \hat{i} - 4 \hat{k} \] \[ \vec{c} = \hat{i} + \lambda \hat{j} + 3 \hat{k} \] ### Step 1: Set up the determinant for coplanarity Vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar if the determinant of the matrix formed by these vectors is zero. We can express this as: \[ \begin{vmatrix} 2 & -3 & 2 \\ 2 & 0 & -4 \\ 1 & \lambda & 3 \end{vmatrix} = 0 \] ### Step 2: Calculate the determinant We will calculate the determinant using the formula for a 3x3 matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, we have: \[ \text{Det} = 2 \begin{vmatrix} 0 & -4 \\ \lambda & 3 \end{vmatrix} - (-3) \begin{vmatrix} 2 & -4 \\ 1 & 3 \end{vmatrix} + 2 \begin{vmatrix} 2 & 0 \\ 1 & \lambda \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 0 & -4 \\ \lambda & 3 \end{vmatrix} = (0)(3) - (-4)(\lambda) = 4\lambda \) 2. \( \begin{vmatrix} 2 & -4 \\ 1 & 3 \end{vmatrix} = (2)(3) - (-4)(1) = 6 + 4 = 10 \) 3. \( \begin{vmatrix} 2 & 0 \\ 1 & \lambda \end{vmatrix} = (2)(\lambda) - (0)(1) = 2\lambda \) Putting it all together: \[ \text{Det} = 2(4\lambda) + 3(10) + 2(2\lambda) \] \[ = 8\lambda + 30 + 4\lambda \] \[ = 12\lambda + 30 \] ### Step 3: Set the determinant to zero For coplanarity, we set the determinant to zero: \[ 12\lambda + 30 = 0 \] ### Step 4: Solve for \( \lambda \) Now, we solve for \( \lambda \): \[ 12\lambda = -30 \] \[ \lambda = -\frac{30}{12} = -\frac{5}{2} \] ### Conclusion The value of \( \lambda \) such that the vectors are coplanar is: \[ \lambda = -\frac{5}{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

If vec(a) = hat(i) + hat(j) + 2 hat(k) , vec(b) = 2 hat(j) + hat(k) and vec (c) = hat(i) + hat(j) + hat(k) . Find a unit vector perpendicular to the plane containing vec(a), vec(b), vec(c)

If vectors vec a= hat i+2 hat j- hat k , vec b=2 hat i- hat j+ hat k and vec c=lambda hat i+ hat j+2 hat k are coplanar, then find the value of (lambda-4) .

Consider three vectors vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k) If these three vectors are coplanar, then value of n will be

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |