Home
Class 12
MATHS
If vec(a) is perpendicular to vec(b) and...

If `vec(a)` is perpendicular to `vec(b)` and `vec( c ),| vec(a) |=2, |vec(b)|=3,|vec(c )|=4` and angle between `vec(b)` and `vec( c)` is `( 2pi )/( 3)`, then `[ vec(a)"" vec( b) "" vec( c)]` is equal to

A

`4 sqrt(3)`

B

`6 sqrt(3)`

C

`12 sqrt(3)` or `- 12 sqrt(3)`

D

`18 sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the scalar triple product (STP) of vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Given that \(\vec{a}\) is perpendicular to both \(\vec{b}\) and \(\vec{c}\), we can use the formula for the scalar triple product: \[ [\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] ### Step 1: Identify the magnitudes and angle We know: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 3\) - \(|\vec{c}| = 4\) - The angle between \(\vec{b}\) and \(\vec{c}\) is \(\frac{2\pi}{3}\). ### Step 2: Calculate \(\vec{b} \times \vec{c}\) The magnitude of the cross product \(\vec{b} \times \vec{c}\) can be calculated using the formula: \[ |\vec{b} \times \vec{c}| = |\vec{b}| |\vec{c}| \sin(\theta) \] where \(\theta\) is the angle between \(\vec{b}\) and \(\vec{c}\). Substituting the values: \[ |\vec{b} \times \vec{c}| = 3 \cdot 4 \cdot \sin\left(\frac{2\pi}{3}\right) \] ### Step 3: Calculate \(\sin\left(\frac{2\pi}{3}\right)\) The sine of \(\frac{2\pi}{3}\) is: \[ \sin\left(\frac{2\pi}{3}\right) = \sin\left(180^\circ - 60^\circ\right) = \sin(60^\circ) = \frac{\sqrt{3}}{2} \] ### Step 4: Substitute back to find \(|\vec{b} \times \vec{c}|\) Now substituting the value of \(\sin\left(\frac{2\pi}{3}\right)\): \[ |\vec{b} \times \vec{c}| = 3 \cdot 4 \cdot \frac{\sqrt{3}}{2} = 6\sqrt{3} \] ### Step 5: Calculate the scalar triple product Now we can find the scalar triple product: \[ [\vec{a}, \vec{b}, \vec{c}] = |\vec{a}| \cdot |\vec{b} \times \vec{c}| \] Substituting the values: \[ [\vec{a}, \vec{b}, \vec{c}] = 2 \cdot 6\sqrt{3} = 12\sqrt{3} \] ### Final Answer Thus, the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\) is: \[ \boxed{12\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b)| =3 and | vec( c)| =4 , then the angle between vec(b) and vec(c ) is

If vec(A) + vec(B) = vec(C ) and A + B = C , then the angle between vec(A) and vec(B) is :

Given that vec(A)+vec(B)=vec(C ) . If |vec(A)|=4, |vec(B)|=5 and |vec(C )|=sqrt(61) , the angle between vec(A) and vec(B) is

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec(A)=vec(B)+vec(C ) , and the magnitudes of vec(A) , vec(B) , vec(C ) are 5,4, and 3 units, then the angle between vec(A) and vec(C ) is

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .

Let vec(A), vec(B) and vec(C) , be unit vectors. Suppose that vec(A).vec(B)=vec(A).vec(C)=0 and the angle between vec(B) and vec(C) is pi/6 then

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |