Home
Class 12
MATHS
If |vec(a) | =2, | vec(b) |=7 and vec(a)...

If `|vec(a) | =2, | vec(b) |=7` and `vec(a) xx vec(b) = 3 hat(i) + 2hat(j) +6 hat(k)`, then the angle between `vec(a) ` and `vec(b)` is

A

`(pi)/(6)`

B

`(pi)/(4)`

C

`(pi)/(3)`

D

`(2pi)/( 3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a}\) and \(\vec{b}\), we can follow these steps: ### Step 1: Given Information We have the following information: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 7\) - \(\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}\) ### Step 2: Calculate the Magnitude of the Cross Product We need to find the magnitude of the cross product \(\vec{a} \times \vec{b}\): \[ |\vec{a} \times \vec{b}| = \sqrt{(3)^2 + (2)^2 + (6)^2} \] Calculating this gives: \[ |\vec{a} \times \vec{b}| = \sqrt{9 + 4 + 36} = \sqrt{49} = 7 \] ### Step 3: Use the Formula for the Magnitude of the Cross Product The magnitude of the cross product can also be expressed in terms of the magnitudes of the vectors and the sine of the angle \(\theta\) between them: \[ |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta \] Substituting the known values: \[ 7 = 2 \cdot 7 \cdot \sin \theta \] ### Step 4: Simplify the Equation Now we simplify the equation: \[ 7 = 14 \cdot \sin \theta \] Dividing both sides by 14: \[ \sin \theta = \frac{7}{14} = \frac{1}{2} \] ### Step 5: Find the Angle \(\theta\) The angle \(\theta\) for which \(\sin \theta = \frac{1}{2}\) is: \[ \theta = \frac{\pi}{6} \] ### Conclusion Thus, the angle between the vectors \(\vec{a}\) and \(\vec{b}\) is \(\frac{\pi}{6}\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If |vec(a)| = 2, |vec(b)| = 7 and vec(a) xx vec(b) = 3hat(i) + 2hat(j) + 6hat(k) , find the angle between vec(a) and vec(b) .

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 hat k ,\ find the angle between vec a\ a n d\ vec bdot

If |a|=2,|b|=7 and vec a x vec b=3 hat i+2 hat j+6 hat k , find the angle between vec a and vec b .

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |