Home
Class 12
MATHS
If (vec(a) + vec(b)) | vec(b) and (vec(a...

If `(vec(a) + vec(b)) _|_ vec(b)` and `(vec(a) + 2 vec(b))_|_ vec(a)`, then

A

`|vec(a) | = | vec(b) |`

B

`2 | vec(a)| = |vec(b) |`

C

`|vec(a)| = 2 | vec(b) |`

D

`|vec(a) | = sqrt(2) | vec(b) | `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions step by step. ### Step 1: Understand the conditions We are given two conditions: 1. \((\vec{a} + \vec{b}) \perp \vec{b}\) 2. \((\vec{a} + 2\vec{b}) \perp \vec{a}\) ### Step 2: Use the property of perpendicular vectors If two vectors are perpendicular, their dot product is zero. Therefore, we can write: 1. \((\vec{a} + \vec{b}) \cdot \vec{b} = 0\) 2. \((\vec{a} + 2\vec{b}) \cdot \vec{a} = 0\) ### Step 3: Expand the dot products Now, we will expand both dot products: 1. \((\vec{a} + \vec{b}) \cdot \vec{b} = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 0\) 2. \((\vec{a} + 2\vec{b}) \cdot \vec{a} = \vec{a} \cdot \vec{a} + 2\vec{b} \cdot \vec{a} = 0\) ### Step 4: Set up the equations From the expansions, we can set up the following equations: 1. \(\vec{a} \cdot \vec{b} + |\vec{b}|^2 = 0\) (Equation 1) 2. \(|\vec{a}|^2 + 2\vec{b} \cdot \vec{a} = 0\) (Equation 2) ### Step 5: Solve Equation 1 for \(\vec{a} \cdot \vec{b}\) From Equation 1, we can express \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = -|\vec{b}|^2 \] ### Step 6: Substitute \(\vec{a} \cdot \vec{b}\) into Equation 2 Now substitute \(\vec{a} \cdot \vec{b}\) into Equation 2: \[ |\vec{a}|^2 + 2(-|\vec{b}|^2) = 0 \] This simplifies to: \[ |\vec{a}|^2 - 2|\vec{b}|^2 = 0 \] ### Step 7: Solve for \(|\vec{a}|^2\) Rearranging gives us: \[ |\vec{a}|^2 = 2|\vec{b}|^2 \] ### Step 8: Take the square root Taking the square root of both sides, we find: \[ |\vec{a}| = \sqrt{2} |\vec{b}| \] ### Conclusion Thus, we can conclude that: \[ \vec{a} = \sqrt{2} \vec{b} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

If vec(a) and vec(b) are two vector such that |vec(a) +vec(b)| =|vec(a)| , then show that vector |2a +b| is perpendicular to vec(b) .

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) | =4 then |vec(b) | is equal to

If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12 , then | vec(a) xx vec(b) | is equal to

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |