Home
Class 12
MATHS
The area of a triangle formed by vertice...

The area of a triangle formed by vertices O,A and B where `vec(OA) = hat(i) + 2 hat(j) + 3 hat(k)` and `vec(OB) = - 3hat(i) - 2 hat(j) + hat(k)` is

A

`3 sqrt(5)` sq. units

B

`5 sqrt(5)` sq. unit

C

`6 sqrt(5)` sq. units

D

4 sq. units

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the vertices O, A, and B, we will follow these steps: ### Step 1: Define the vectors Given: - \(\vec{OA} = \hat{i} + 2\hat{j} + 3\hat{k}\) - \(\vec{OB} = -3\hat{i} - 2\hat{j} + \hat{k}\) ### Step 2: Calculate the cross product \(\vec{OA} \times \vec{OB}\) To find the area of the triangle, we first need to calculate the cross product of the vectors \(\vec{OA}\) and \(\vec{OB}\). We can represent this as a determinant: \[ \vec{OA} \times \vec{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -3 & -2 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant Now, we will calculate the determinant step by step: \[ \vec{OA} \times \vec{OB} = \hat{i} \begin{vmatrix} 2 & 3 \\ -2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ -3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ -3 & -2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 2 & 3 \\ -2 & 1 \end{vmatrix} = (2)(1) - (3)(-2) = 2 + 6 = 8\) 2. \(\begin{vmatrix} 1 & 3 \\ -3 & 1 \end{vmatrix} = (1)(1) - (3)(-3) = 1 + 9 = 10\) 3. \(\begin{vmatrix} 1 & 2 \\ -3 & -2 \end{vmatrix} = (1)(-2) - (2)(-3) = -2 + 6 = 4\) Now substituting back into the equation: \[ \vec{OA} \times \vec{OB} = 8\hat{i} - 10\hat{j} + 4\hat{k} \] ### Step 4: Find the magnitude of the cross product The magnitude of the cross product is given by: \[ |\vec{OA} \times \vec{OB}| = \sqrt{8^2 + (-10)^2 + 4^2} \] Calculating each term: \[ = \sqrt{64 + 100 + 16} = \sqrt{180} \] ### Step 5: Calculate the area of the triangle The area \(A\) of the triangle is half the magnitude of the cross product: \[ A = \frac{1}{2} |\vec{OA} \times \vec{OB}| = \frac{1}{2} \sqrt{180} = \frac{\sqrt{180}}{2} \] ### Step 6: Simplify the area We can simplify \(\sqrt{180}\): \[ \sqrt{180} = \sqrt{36 \times 5} = 6\sqrt{5} \] Thus, the area becomes: \[ A = \frac{6\sqrt{5}}{2} = 3\sqrt{5} \] ### Final Answer The area of the triangle formed by vertices O, A, and B is \(3\sqrt{5}\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Show that the two vectors vec(A) and vec(B) are parallel , where vec(A) = hat(i) + 2 hat(j) + hat(k) and vec(B) = 3 hat(i) + 6 hat(j) + 3 hat(k)

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the area of the triangle formed by O ,A ,B when vec O A= hat i+2 hat j+3 hat k , vec O B=-3 hat i-2 hat j+ hat kdot

Find the area of the triangle formed by O ,A ,B when vec O A= hat i+2 hat j+3 hat k , vec O B=-3 hat i-2 hat j+ hat kdot

Calculate the area of the parallelogram when adjacent sides are given by the vectors vec(A)=hat(i)+2hat(j)+3hat(k) and vec(B)=2hat(i)-3hat(j)+hat(k) .

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the area of the parallelogram whose diagonals are determined by vectors vec(a)= 3hat(i) + hat(j)-2hat(k) and vec(b)= hat(i) - 3hat(j) + 4hat(k)

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |