Home
Class 12
MATHS
The vectors 3 hat(i)- hat(j) + 2 hat(k) ...

The vectors `3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)` and `hat(i) + lambdahat(j) - hat(k)` are coplanar if the value of `lambda `is (i) `-2` (ii) 0 (iii) 2 (iv) any real number

A

`-2`

B

0

C

2

D

any real number

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for which the vectors \( \mathbf{A} = 3\hat{i} - \hat{j} + 2\hat{k} \), \( \mathbf{B} = 2\hat{i} + \hat{j} + 3\hat{k} \), and \( \mathbf{C} = \hat{i} + \lambda\hat{j} - \hat{k} \) are coplanar, we can use the condition that three vectors are coplanar if the scalar triple product is zero. This can be expressed using the determinant of a matrix formed by the vectors. ### Step 1: Write the vectors in matrix form We can represent the vectors as follows: \[ \mathbf{A} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 1 \\ \lambda \\ -1 \end{pmatrix} \] ### Step 2: Set up the determinant The vectors are coplanar if the determinant of the matrix formed by these vectors is zero: \[ \begin{vmatrix} 3 & -1 & 2 \\ 2 & 1 & 3 \\ 1 & \lambda & -1 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant We can calculate the determinant using the first row: \[ = 3 \begin{vmatrix} 1 & 3 \\ \lambda & -1 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} + 2 \begin{vmatrix} 2 & 1 \\ 1 & \lambda \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 1 & 3 \\ \lambda & -1 \end{vmatrix} = (1)(-1) - (3)(\lambda) = -1 - 3\lambda \) 2. \( \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (3)(1) = -2 - 3 = -5 \) 3. \( \begin{vmatrix} 2 & 1 \\ 1 & \lambda \end{vmatrix} = (2)(\lambda) - (1)(1) = 2\lambda - 1 \) Substituting back into the determinant: \[ 3(-1 - 3\lambda) + 5 + 2(2\lambda - 1) = 0 \] \[ -3 - 9\lambda + 5 + 4\lambda - 2 = 0 \] \[ -5\lambda = 0 \implies -9\lambda + 2 = 0 \] \[ -5\lambda = 0 \implies -5\lambda = -5 \implies \lambda = -2 \] ### Conclusion Thus, the value of \( \lambda \) for which the vectors are coplanar is: \[ \lambda = -2 \] ### Final Answer The correct option is (i) \( -2 \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

The vectors 3 hat i- hat j +2 hat k' , 2 hat i+hat j + 3 hat k and hat i + lambda hat j - hat k are coplanar if value of lambda is (A) -2 (B) 0 (C) 2 (D) any real number

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+m hat(j)+5 hat(k) are coplanar?

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If vectors vec a= hat i+2 hat j- hat k , vec b=2 hat i- hat j+ hat k and vec c=lambda hat i+ hat j+2 hat k are coplanar, then find the value of (lambda-4) .

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + hat(k) and hat(i) + 2 hat(j) + 3 hat(k) are perpendicular is

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  2. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  3. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  4. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  5. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  6. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  7. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  8. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  9. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  10. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  12. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |

  13. If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1, then

    Text Solution

    |

  14. If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx v...

    Text Solution

    |

  15. If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j...

    Text Solution

    |

  16. If (vec(a) + vec(b)) | vec(b) and (vec(a) + 2 vec(b))| vec(a), then

    Text Solution

    |

  17. If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + ve...

    Text Solution

    |

  18. If hat(i), hat(j), hat(k) are unit vectors along three mutually perpen...

    Text Solution

    |

  19. The area of a triangle formed by vertices O,A and B where vec(OA) = ha...

    Text Solution

    |

  20. The vectors 3 hat(i)- hat(j) + 2 hat(k) , 2 hat(i) + hat(j) + 3 hat(k)...

    Text Solution

    |