Home
Class 12
MATHS
If f(x)={{:((sqrt(x^(2)+7)-4)/(x+3)",",...

If `f(x)={{:((sqrt(x^(2)+7)-4)/(x+3)",",xne-3),(k,","x=-3):}` is continuous at x=-3 then the value of k is

A

`(3)/(4)`

B

0

C

`-(3)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{\sqrt{x^2 + 7} - 4}{x + 3} & \text{if } x \neq -3 \\ k & \text{if } x = -3 \end{cases} \] is continuous at \( x = -3 \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches \(-3\) is equal to \( f(-3) \). ### Step 1: Find the limit of \( f(x) \) as \( x \) approaches \(-3 \) We start by calculating the limit: \[ \lim_{x \to -3} f(x) = \lim_{x \to -3} \frac{\sqrt{x^2 + 7} - 4}{x + 3} \] ### Step 2: Substitute \( x = -3 \) directly into the function Substituting \( x = -3 \) gives: \[ f(-3) = \frac{\sqrt{(-3)^2 + 7} - 4}{-3 + 3} = \frac{\sqrt{9 + 7} - 4}{0} = \frac{\sqrt{16} - 4}{0} = \frac{4 - 4}{0} = \frac{0}{0} \] This is an indeterminate form, so we need to apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and denominator: 1. Differentiate the numerator \( \sqrt{x^2 + 7} - 4 \): - The derivative of \( \sqrt{x^2 + 7} \) is \( \frac{1}{2\sqrt{x^2 + 7}} \cdot (2x) = \frac{x}{\sqrt{x^2 + 7}} \). - The derivative of \(-4\) is \(0\). Thus, the derivative of the numerator is: \[ \frac{x}{\sqrt{x^2 + 7}} \] 2. Differentiate the denominator \( x + 3 \): - The derivative is \(1\). Now we can apply L'Hôpital's Rule: \[ \lim_{x \to -3} \frac{\sqrt{x^2 + 7} - 4}{x + 3} = \lim_{x \to -3} \frac{\frac{x}{\sqrt{x^2 + 7}}}{1} = \lim_{x \to -3} \frac{x}{\sqrt{x^2 + 7}} \] ### Step 4: Evaluate the limit Now substituting \( x = -3 \): \[ \lim_{x \to -3} \frac{x}{\sqrt{x^2 + 7}} = \frac{-3}{\sqrt{(-3)^2 + 7}} = \frac{-3}{\sqrt{9 + 7}} = \frac{-3}{\sqrt{16}} = \frac{-3}{4} \] ### Step 5: Set the limit equal to \( k \) For the function to be continuous at \( x = -3 \): \[ k = \lim_{x \to -3} f(x) = \frac{-3}{4} \] ### Conclusion Thus, the value of \( k \) is \[ \boxed{-\frac{3}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • APPLICATIONS OF DERIVATIVES

    ICSE|Exercise Multiple Choice Questions|47 Videos
  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:((sqrt(x^(2)+5)-3)/(x+2)",",x ne-2),(k,","x=-2):} is continuous at x=-2 , then the value of k is

If f(x){{:((sqrt(4+x)-2)/(x)",",xne0),(k,","x=0):} is continuous at x =0 , then the value of k is

If the function f(x), defined as f(x)={{:((a(1-xsinx)+b cosx+5)/(x^(2)),":", xne0),(3,":",x=0):} is continuous at x=0 , then the value of (b^(4)+a)/(5+a) is equal to

if f(x)= {(frac{x^3-8}{x-2},xne2),(k,x=2):} is continous at x=2 then value of k is

If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", " x= 1):}, is continuous at x=1,find the value of k.

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

If f(x)={{:((5|x|+4tanx)/(x),xne0),(k,x=0):} , then f(x) is continuous at x = 0 for

Let f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x^(2))),,,,xne0),(e^(-K//2),,,,x=0):} if f(x) is continous at x=0 then the value of k is (a) 1 (b) 2 (c) 3 (d) 4

f(x)={[(x^(2)-3)/(x-2),,x!=2],[k,x=2] is continuous at x=2 then value of k is (a) 8, (b) 2, (c) 6, (d) 12

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

ICSE-CONTINUITY AND DIFFERENTIABILITY -MULTIPLE CHOICE QUESTIONS
  1. If f(x)={{:((sqrt(x^(2)+7)-4)/(x+3)",",xne-3),(k,","x=-3):} is contin...

    Text Solution

    |

  2. The number of point of discountinuity of the rational function f(x)=(x...

    Text Solution

    |

  3. The number of point of discountinuity of the function f(x)=|x-1|+|x-2|...

    Text Solution

    |

  4. The function f(x) = cot x is discountinuous on these

    Text Solution

    |

  5. The domain of continuity of the function f(x) = tan x is

    Text Solution

    |

  6. The function f(x)={x} , where [x] denotes the greatest integer functio...

    Text Solution

    |

  7. The function f(x){{:(x-1",",xlt2),(2x-3",",xgt2):} is continuous func...

    Text Solution

    |

  8. If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

    Text Solution

    |

  9. If f(x){{:((sqrt(4+x)-2)/(x)",",xne0),(k,","x=0):} is continuous at x...

    Text Solution

    |

  10. If f(x)={{:((sqrt(x^(2)+5)-3)/(x+2)",",x ne-2),(k,","x=-2):} is conti...

    Text Solution

    |

  11. If f(x)={{:((sinpix)/(5x)",",x ne0),(k,","0):} is continuous at x=0 ,...

    Text Solution

    |

  12. The value of the function f at x=0 so that the function f(x)=(2^(x)-2...

    Text Solution

    |

  13. If f(x)=(2x+sin^(-1)x)/(2x-tan^(-1)x) is continuous for all x in (-1,1...

    Text Solution

    |

  14. If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is...

    Text Solution

    |

  15. If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4))...

    Text Solution

    |

  16. If f(x)={{:((1-cospx)/(xsinx)",",x ne0),((1)/(2)",",x=0):} is continu...

    Text Solution

    |

  17. If f(x)={{:((sqrt(1-cos2x))/(sqrt(2)x)",",xne0),(k",",x=0):} then whi...

    Text Solution

    |

  18. If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}

    Text Solution

    |

  19. If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is contin...

    Text Solution

    |

  20. The function f(x) =|x| at x=0 is

    Text Solution

    |

  21. The function f(x) = x |x| at x= 0 is

    Text Solution

    |