Home
Class 12
MATHS
If y=e^(sin^(-1)x)+e^(cos^(-1)x),0ltxlt1...

If `y=e^(sin^(-1)x)+e^(cos^(-1)x),0ltxlt1`, then

A

`(dy)/(dx)=0`

B

`(dy)/(dx)=(pi)/(2)`

C

does not exist

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y = e^{\sin^{-1}x} + e^{\cos^{-1}x} \) for \( 0 < x < 1 \). ### Step-by-Step Solution: 1. **Write the given function:** \[ y = e^{\sin^{-1}x} + e^{\cos^{-1}x} \] 2. **Use the identity for inverse trigonometric functions:** Recall that: \[ \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \] Therefore, we can express \( e^{\cos^{-1}x} \) in terms of \( e^{\sin^{-1}x} \): \[ e^{\cos^{-1}x} = e^{\frac{\pi}{2} - \sin^{-1}x} = \frac{e^{\frac{\pi}{2}}}{e^{\sin^{-1}x}} \] 3. **Substituting back into the equation:** Substitute \( e^{\cos^{-1}x} \) into the equation for \( y \): \[ y = e^{\sin^{-1}x} + \frac{e^{\frac{\pi}{2}}}{e^{\sin^{-1}x}} \] Let \( z = e^{\sin^{-1}x} \), then: \[ y = z + \frac{e^{\frac{\pi}{2}}}{z} \] 4. **Finding the derivative \( \frac{dy}{dx} \):** Differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{dz}{dx} + \frac{d}{dx}\left(\frac{e^{\frac{\pi}{2}}}{z}\right) \] Using the quotient rule: \[ \frac{d}{dx}\left(\frac{e^{\frac{\pi}{2}}}{z}\right) = -\frac{e^{\frac{\pi}{2}} \frac{dz}{dx}}{z^2} \] 5. **Finding \( \frac{dz}{dx} \):** We know: \[ z = e^{\sin^{-1}x} \] Thus, \[ \frac{dz}{dx} = e^{\sin^{-1}x} \cdot \frac{d}{dx}(\sin^{-1}x) = e^{\sin^{-1}x} \cdot \frac{1}{\sqrt{1-x^2}} \] 6. **Combining the derivatives:** Substitute \( \frac{dz}{dx} \) back into the derivative of \( y \): \[ \frac{dy}{dx} = e^{\sin^{-1}x} \cdot \frac{1}{\sqrt{1-x^2}} - \frac{e^{\frac{\pi}{2}} \cdot e^{\sin^{-1}x} \cdot \frac{1}{\sqrt{1-x^2}}}{(e^{\sin^{-1}x})^2} \] Simplifying this gives: \[ \frac{dy}{dx} = \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}} - \frac{e^{\frac{\pi}{2}}}{e^{\sin^{-1}x} \sqrt{1-x^2}} \] \[ = \frac{e^{\sin^{-1}x} - e^{\frac{\pi}{2}}}{\sqrt{1-x^2}} \] 7. **Setting the derivative to zero:** For \( \frac{dy}{dx} = 0 \): \[ e^{\sin^{-1}x} - e^{\frac{\pi}{2}} = 0 \] This implies: \[ e^{\sin^{-1}x} = e^{\frac{\pi}{2}} \] Therefore, \( \sin^{-1}x = \frac{\pi}{2} \) which is not possible for \( 0 < x < 1 \). ### Conclusion: Thus, \( \frac{dy}{dx} = 0 \) for \( 0 < x < 1 \) means that \( y \) is constant in this interval.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • APPLICATIONS OF DERIVATIVES

    ICSE|Exercise Multiple Choice Questions|47 Videos
  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos

Similar Questions

Explore conceptually related problems

If y=e^("sin"^(-1)x)andz=e^(-"cos"^(-1)x) , prove that dy/(dz)=e^(pi//2) .

Simplify sin(cot^(-1)(cos(tan^(-1)x))),0 ltxlt1 .

e^xlogy=sin^(-1)x+sin^(-1)y

If sum_(i=1)^(4)(sin^(-1)x_(i)+cos^(-1)y_(i))=6pi , then \int\limitsum_(i=1)^(4)x(i)^sum(i=1)^(4)y(i) xln(1+x^(2))(e^(x^(2))/(1+e^(2x)))dx is euqal to

Differentiate sin^(-1)((1-x^2)/(1+x^2)) , 0ltxlt1 with respect to x

If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal to

If y = cos^(-1)(2x)+2cos^(-1)sqrt(1-4x^2) , -1/2ltxlt0 , find (dy)/(dx)

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n x^2+y^2+z^2+2x y z=1 2(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)z x y+y z+z x=x+y+z-1 (x+1/x)+(y+1/y)+(z+1/z)geq6

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If y=sin^(-1)((2x)/(1+x^2))+sec^(-1)((1+x^2)/(1-x^2)),0ltxlt1, prove that (dy)/ (dx)="4/(1+x^2)

ICSE-CONTINUITY AND DIFFERENTIABILITY -MULTIPLE CHOICE QUESTIONS
  1. If y=e^(sin^(-1)x)+e^(cos^(-1)x),0ltxlt1, then

    Text Solution

    |

  2. The number of point of discountinuity of the rational function f(x)=(x...

    Text Solution

    |

  3. The number of point of discountinuity of the function f(x)=|x-1|+|x-2|...

    Text Solution

    |

  4. The function f(x) = cot x is discountinuous on these

    Text Solution

    |

  5. The domain of continuity of the function f(x) = tan x is

    Text Solution

    |

  6. The function f(x)={x} , where [x] denotes the greatest integer functio...

    Text Solution

    |

  7. The function f(x){{:(x-1",",xlt2),(2x-3",",xgt2):} is continuous func...

    Text Solution

    |

  8. If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

    Text Solution

    |

  9. If f(x){{:((sqrt(4+x)-2)/(x)",",xne0),(k,","x=0):} is continuous at x...

    Text Solution

    |

  10. If f(x)={{:((sqrt(x^(2)+5)-3)/(x+2)",",x ne-2),(k,","x=-2):} is conti...

    Text Solution

    |

  11. If f(x)={{:((sinpix)/(5x)",",x ne0),(k,","0):} is continuous at x=0 ,...

    Text Solution

    |

  12. The value of the function f at x=0 so that the function f(x)=(2^(x)-2...

    Text Solution

    |

  13. If f(x)=(2x+sin^(-1)x)/(2x-tan^(-1)x) is continuous for all x in (-1,1...

    Text Solution

    |

  14. If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is...

    Text Solution

    |

  15. If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4))...

    Text Solution

    |

  16. If f(x)={{:((1-cospx)/(xsinx)",",x ne0),((1)/(2)",",x=0):} is continu...

    Text Solution

    |

  17. If f(x)={{:((sqrt(1-cos2x))/(sqrt(2)x)",",xne0),(k",",x=0):} then whi...

    Text Solution

    |

  18. If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}

    Text Solution

    |

  19. If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is contin...

    Text Solution

    |

  20. The function f(x) =|x| at x=0 is

    Text Solution

    |

  21. The function f(x) = x |x| at x= 0 is

    Text Solution

    |