Home
Class 12
MATHS
If f(x)={{:((sqrt(x^(2)+5)-3)/(x+2)",",x...

If `f(x)={{:((sqrt(x^(2)+5)-3)/(x+2)",",x ne-2),(k,","x=-2):}` is continuous at x=-2 , then the value of k is

A

`-(2)/(3)`

B

0

C

`(2)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for the function \[ f(x) = \begin{cases} \frac{\sqrt{x^2 + 5} - 3}{x + 2} & \text{if } x \neq -2 \\ k & \text{if } x = -2 \end{cases} \] to be continuous at \( x = -2 \), we need to ensure that \[ f(-2) = \lim_{x \to -2} f(x). \] ### Step 1: Find \( f(-2) \) Since \( f(-2) = k \), we have: \[ f(-2) = k. \] ### Step 2: Find \( \lim_{x \to -2} f(x) \) We need to calculate the limit: \[ \lim_{x \to -2} \frac{\sqrt{x^2 + 5} - 3}{x + 2}. \] ### Step 3: Substitute \( x = -2 \) Substituting \( x = -2 \) directly into the limit gives us: \[ \frac{\sqrt{(-2)^2 + 5} - 3}{-2 + 2} = \frac{\sqrt{4 + 5} - 3}{0} = \frac{\sqrt{9} - 3}{0} = \frac{3 - 3}{0} = \frac{0}{0}. \] This is an indeterminate form, so we need to manipulate the expression. ### Step 4: Rationalize the numerator To resolve the indeterminate form, we multiply the numerator and denominator by the conjugate of the numerator: \[ \lim_{x \to -2} \frac{\sqrt{x^2 + 5} - 3}{x + 2} \cdot \frac{\sqrt{x^2 + 5} + 3}{\sqrt{x^2 + 5} + 3}. \] This gives us: \[ \lim_{x \to -2} \frac{(\sqrt{x^2 + 5})^2 - 3^2}{(x + 2)(\sqrt{x^2 + 5} + 3)} = \lim_{x \to -2} \frac{x^2 + 5 - 9}{(x + 2)(\sqrt{x^2 + 5} + 3)} = \lim_{x \to -2} \frac{x^2 - 4}{(x + 2)(\sqrt{x^2 + 5} + 3)}. \] ### Step 5: Factor the numerator The numerator \( x^2 - 4 \) can be factored as: \[ x^2 - 4 = (x - 2)(x + 2). \] Thus, we have: \[ \lim_{x \to -2} \frac{(x - 2)(x + 2)}{(x + 2)(\sqrt{x^2 + 5} + 3)}. \] ### Step 6: Cancel \( (x + 2) \) We can cancel \( (x + 2) \) from the numerator and denominator (as long as \( x \neq -2 \)): \[ \lim_{x \to -2} \frac{x - 2}{\sqrt{x^2 + 5} + 3}. \] ### Step 7: Substitute \( x = -2 \) again Now substituting \( x = -2 \): \[ \frac{-2 - 2}{\sqrt{(-2)^2 + 5} + 3} = \frac{-4}{\sqrt{4 + 5} + 3} = \frac{-4}{\sqrt{9} + 3} = \frac{-4}{3 + 3} = \frac{-4}{6} = -\frac{2}{3}. \] ### Step 8: Set the limit equal to \( k \) Since \( f \) is continuous at \( x = -2 \): \[ k = \lim_{x \to -2} f(x) = -\frac{2}{3}. \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{-\frac{2}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • APPLICATIONS OF DERIVATIVES

    ICSE|Exercise Multiple Choice Questions|47 Videos
  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:((sqrt(x^(2)+7)-4)/(x+3)",",xne-3),(k,","x=-3):} is continuous at x=-3 then the value of k is

If f(x){{:((sqrt(4+x)-2)/(x)",",xne0),(k,","x=0):} is continuous at x =0 , then the value of k is

if f(x)= {(frac{x^3-8}{x-2},xne2),(k,x=2):} is continous at x=2 then value of k is

If f(x) = {{:((x^(2)-(a+2)x+2a)/(x-2)",",x ne 2),(" "2",",x = 2):} is continuous at x = 2, then a is equal to

If f(x)={{:((sinpix)/(5x)",",x ne0),(k,","0):} is continuous at x=0 , then k is equal to

If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", " x= 1):}, is continuous at x=1,find the value of k.

If the function f(x)={{:((x^(2)-1)/(x-1), "When ", x ne1),(k, "When" , x=1):} is given to be continuous at x=1, then the value of k is ____.

If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4)):} is continuous at x=(pi)/(4) , then the value of k is

f(x)={[(x^(2)-3)/(x-2),,x!=2],[k,x=2] is continuous at x=2 then value of k is (a) 8, (b) 2, (c) 6, (d) 12

If f(x)={((2^(x+2)-16)/(4^x-16),x!=2),(k, x=2):} is continuous at x=2 , find k .

ICSE-CONTINUITY AND DIFFERENTIABILITY -MULTIPLE CHOICE QUESTIONS
  1. If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

    Text Solution

    |

  2. If f(x){{:((sqrt(4+x)-2)/(x)",",xne0),(k,","x=0):} is continuous at x...

    Text Solution

    |

  3. If f(x)={{:((sqrt(x^(2)+5)-3)/(x+2)",",x ne-2),(k,","x=-2):} is conti...

    Text Solution

    |

  4. If f(x)={{:((sinpix)/(5x)",",x ne0),(k,","0):} is continuous at x=0 ,...

    Text Solution

    |

  5. The value of the function f at x=0 so that the function f(x)=(2^(x)-2...

    Text Solution

    |

  6. If f(x)=(2x+sin^(-1)x)/(2x-tan^(-1)x) is continuous for all x in (-1,1...

    Text Solution

    |

  7. If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is...

    Text Solution

    |

  8. If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4))...

    Text Solution

    |

  9. If f(x)={{:((1-cospx)/(xsinx)",",x ne0),((1)/(2)",",x=0):} is continu...

    Text Solution

    |

  10. If f(x)={{:((sqrt(1-cos2x))/(sqrt(2)x)",",xne0),(k",",x=0):} then whi...

    Text Solution

    |

  11. If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}

    Text Solution

    |

  12. If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is contin...

    Text Solution

    |

  13. The function f(x) =|x| at x=0 is

    Text Solution

    |

  14. The function f(x) = x |x| at x= 0 is

    Text Solution

    |

  15. The derivative of the function f(x) =x|x| at x= 0 is

    Text Solution

    |

  16. If f(x)={{:(x",",0lexle1),(x+a",",xgt1):} then

    Text Solution

    |

  17. If f(x)={{:(ax^(2)+1",",xgt1),(x+a",",xle1):} is derivable at x=1 , t...

    Text Solution

    |

  18. The function f(x)=|x|+|x-1| is

    Text Solution

    |

  19. The derivative of f(x)=3|2+x| at x=-3 is

    Text Solution

    |

  20. The derivative of f(x)=|x-1|+|x-3| at x=2 is

    Text Solution

    |