Home
Class 12
MATHS
If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)...

If `f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):}` is continuous at `x=(pi)/(4)` then the value of k is

A

1

B

`-1`

C

`(1)/(2)`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{1 - \tan x}{4x - \pi} & \text{if } x \neq \frac{\pi}{4} \\ k & \text{if } x = \frac{\pi}{4} \end{cases} \] is continuous at \( x = \frac{\pi}{4} \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{4} \) is equal to \( f\left(\frac{\pi}{4}\right) \). ### Step 1: Find the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{4} \) We start by calculating the left-hand limit (LHL) and right-hand limit (RHL) of \( f(x) \) as \( x \) approaches \( \frac{\pi}{4} \): \[ \lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{4x - \pi} \] ### Step 2: Substitute \( x = \frac{\pi}{4} \) into the limit expression At \( x = \frac{\pi}{4} \), we know that \( \tan\left(\frac{\pi}{4}\right) = 1 \). Therefore, we can substitute this into the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{4x - \pi} = \frac{1 - 1}{4\left(\frac{\pi}{4}\right) - \pi} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule We differentiate the numerator and denominator separately: - The derivative of the numerator \( 1 - \tan x \) is \( -\sec^2 x \). - The derivative of the denominator \( 4x - \pi \) is \( 4 \). Thus, we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{4x - \pi} = \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{4} \] ### Step 4: Substitute \( x = \frac{\pi}{4} \) into the new limit expression Now substituting \( x = \frac{\pi}{4} \): \[ \sec^2\left(\frac{\pi}{4}\right) = 2 \quad \text{(since } \sec\left(\frac{\pi}{4}\right) = \sqrt{2}\text{)} \] So we get: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{4} = \frac{-2}{4} = -\frac{1}{2} \] ### Step 5: Set the limit equal to \( k \) For \( f(x) \) to be continuous at \( x = \frac{\pi}{4} \), we need: \[ k = \lim_{x \to \frac{\pi}{4}} f(x) = -\frac{1}{2} \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • APPLICATIONS OF DERIVATIVES

    ICSE|Exercise Multiple Choice Questions|47 Videos
  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4)):} is continuous at x=(pi)/(4) , then the value of k is

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

If f(x)={((sin(cosx)-cosx)/((pi-2x)^2) ,, x!=pi/2),(k ,, x=pi/2):} is continuous at x=pi/2, then k is equal to

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to:

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], If f(x)i s continuous in [0,pi/4], then find the value of f(pi/4)dot

L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], If f(x)i s continuous in [0,pi/4], then find the value of f(pi/4)dot

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

ICSE-CONTINUITY AND DIFFERENTIABILITY -MULTIPLE CHOICE QUESTIONS
  1. The value of the function f at x=0 so that the function f(x)=(2^(x)-2...

    Text Solution

    |

  2. If f(x)=(2x+sin^(-1)x)/(2x-tan^(-1)x) is continuous for all x in (-1,1...

    Text Solution

    |

  3. If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is...

    Text Solution

    |

  4. If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4))...

    Text Solution

    |

  5. If f(x)={{:((1-cospx)/(xsinx)",",x ne0),((1)/(2)",",x=0):} is continu...

    Text Solution

    |

  6. If f(x)={{:((sqrt(1-cos2x))/(sqrt(2)x)",",xne0),(k",",x=0):} then whi...

    Text Solution

    |

  7. If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}

    Text Solution

    |

  8. If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is contin...

    Text Solution

    |

  9. The function f(x) =|x| at x=0 is

    Text Solution

    |

  10. The function f(x) = x |x| at x= 0 is

    Text Solution

    |

  11. The derivative of the function f(x) =x|x| at x= 0 is

    Text Solution

    |

  12. If f(x)={{:(x",",0lexle1),(x+a",",xgt1):} then

    Text Solution

    |

  13. If f(x)={{:(ax^(2)+1",",xgt1),(x+a",",xle1):} is derivable at x=1 , t...

    Text Solution

    |

  14. The function f(x)=|x|+|x-1| is

    Text Solution

    |

  15. The derivative of f(x)=3|2+x| at x=-3 is

    Text Solution

    |

  16. The derivative of f(x)=|x-1|+|x-3| at x=2 is

    Text Solution

    |

  17. The function f(x) =e^(|x|) is

    Text Solution

    |

  18. The function f(x)=|sinx|

    Text Solution

    |

  19. The set of number where the function f given by f(x)=|2x-1| cos x is...

    Text Solution

    |

  20. If y=log(sece^(x^(2))) , then (dy)/(dx)=

    Text Solution

    |