Home
Class 12
MATHS
If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x...

If `f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4)):}` is continuous at `x=(pi)/(4)` , then the value of k is

A

1

B

2

C

`(1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the function \[ f(x) = \begin{cases} \tan\left(\frac{\pi}{4} - x\right) / \cot(2x) & \text{if } x \neq \frac{\pi}{4} \\ k & \text{if } x = \frac{\pi}{4} \end{cases} \] is continuous at \( x = \frac{\pi}{4} \), we need to ensure that \[ \lim_{x \to \frac{\pi}{4}} f(x) = f\left(\frac{\pi}{4}\right) = k. \] ### Step 1: Find the limit as \( x \) approaches \( \frac{\pi}{4} \) We need to calculate \[ \lim_{x \to \frac{\pi}{4}} \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot(2x)}. \] ### Step 2: Substitute \( x = \frac{\pi}{4} \) Substituting \( x = \frac{\pi}{4} \): - \( \tan\left(\frac{\pi}{4} - \frac{\pi}{4}\right) = \tan(0) = 0 \) - \( \cot(2 \cdot \frac{\pi}{4}) = \cot\left(\frac{\pi}{2}\right) = 0 \) This gives us the indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. ### Step 4: Differentiate the numerator and denominator 1. Differentiate the numerator \( \tan\left(\frac{\pi}{4} - x\right) \): - The derivative is \( \sec^2\left(\frac{\pi}{4} - x\right) \cdot (-1) = -\sec^2\left(\frac{\pi}{4} - x\right) \). 2. Differentiate the denominator \( \cot(2x) \): - The derivative is \( -\csc^2(2x) \cdot 2 = -2 \csc^2(2x) \). ### Step 5: Rewrite the limit using derivatives Now we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2\left(\frac{\pi}{4} - x\right)}{-2 \csc^2(2x)} = \lim_{x \to \frac{\pi}{4}} \frac{\sec^2\left(\frac{\pi}{4} - x\right)}{2 \csc^2(2x)}. \] ### Step 6: Evaluate the limit Now substituting \( x = \frac{\pi}{4} \): - \( \sec^2\left(\frac{\pi}{4} - \frac{\pi}{4}\right) = \sec^2(0) = 1 \) - \( \csc^2\left(\frac{\pi}{2}\right) = \csc^2\left(\frac{\pi}{2}\right) = 1 \) Thus, we get: \[ \lim_{x \to \frac{\pi}{4}} \frac{1}{2 \cdot 1} = \frac{1}{2}. \] ### Step 7: Set the limit equal to \( k \) Since the function is continuous at \( x = \frac{\pi}{4} \), we have: \[ k = \lim_{x \to \frac{\pi}{4}} f(x) = \frac{1}{2}. \] ### Final Answer Thus, the value of \( k \) is \[ \boxed{\frac{1}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • APPLICATIONS OF DERIVATIVES

    ICSE|Exercise Multiple Choice Questions|47 Videos
  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is continuous at x=(pi)/(4) then the value of k is

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

If f(x)={((sin(cosx)-cosx)/((pi-2x)^2) ,, x!=pi/2),(k ,, x=pi/2):} is continuous at x=pi/2, then k is equal to

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

f(x) = {{:(("tan"((pi)/(4)+x))^(1//x)",",x ne 0),(k",",x = 0):} for what value of k, f(x) is continuous at x = 0 ?

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to: