Home
Class 12
MATHS
If f(x)={{:((1-cospx)/(xsinx)",",x ne0),...

If `f(x)={{:((1-cospx)/(xsinx)",",x ne0),((1)/(2)",",x=0):}` is continuous at x=0 then p is equal to

A

2

B

`-2`

C

1,-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( p \) for which the function \[ f(x) = \begin{cases} \frac{1 - \cos(px)}{x \sin x} & \text{if } x \neq 0 \\ \frac{1}{2} & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to ensure that \[ \lim_{x \to 0} f(x) = f(0). \] ### Step 1: Find \( f(0) \) From the definition of the function, we have: \[ f(0) = \frac{1}{2}. \] ### Step 2: Calculate \( \lim_{x \to 0} f(x) \) We need to evaluate the limit: \[ \lim_{x \to 0} \frac{1 - \cos(px)}{x \sin x}. \] ### Step 3: Apply L'Hôpital's Rule Since both the numerator and denominator approach \( 0 \) as \( x \to 0 \) (i.e., \( 1 - \cos(px) \to 0 \) and \( x \sin x \to 0 \)), we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{1 - \cos(px)}{x \sin x} = \lim_{x \to 0} \frac{(p \sin(px))}{\sin x + x \cos x}. \] ### Step 4: Evaluate the limit again Now we evaluate the limit again. As \( x \to 0 \): - \( \sin(px) \to px \) - \( \sin x \to x \) - \( \cos x \to 1 \) Thus, we have: \[ \lim_{x \to 0} \frac{p \sin(px)}{\sin x + x \cos x} = \lim_{x \to 0} \frac{p(px)}{x + x} = \lim_{x \to 0} \frac{p p x}{2x} = \frac{p^2}{2}. \] ### Step 5: Set the limit equal to \( f(0) \) For continuity at \( x = 0 \), we set: \[ \frac{p^2}{2} = \frac{1}{2}. \] ### Step 6: Solve for \( p \) Multiplying both sides by \( 2 \): \[ p^2 = 1. \] Taking the square root of both sides gives: \[ p = 1 \quad \text{or} \quad p = -1. \] ### Conclusion Since the problem does not specify the sign of \( p \), we can conclude that \( p \) can be either \( 1 \) or \( -1 \). However, the context of the options suggests we should consider only the positive value. Therefore, the value of \( p \) is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • APPLICATIONS OF DERIVATIVES

    ICSE|Exercise Multiple Choice Questions|47 Videos
  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos

Similar Questions

Explore conceptually related problems

If f(x)={((1-coskx)/(xsinx) ,, x!=0),(1/2 ,, x=0):} is continuous at x=0, find k

If f(x)={{:((sinpix)/(5x)",",x ne0),(k,","0):} is continuous at x=0 , then k is equal to

If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",x = 0):} is continuous at x = 0, then k is equal to

For what values of k , f(x)={:{((1-coskx)/(xsinx)," if " x ne 0),(1/2," if " x =0):} is continuous at x = 0 ?

If the function f(x), defined as f(x)={{:((a(1-xsinx)+b cosx+5)/(x^(2)),":", xne0),(3,":",x=0):} is continuous at x=0 , then the value of (b^(4)+a)/(5+a) is equal to

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

If f(x)=(x+1)^(cotx) be continuous at x=0, the f(0) is equal to

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} is a continous at x=0, then