Home
Class 12
MATHS
If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),...

If `f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}`

A

1

B

`-1`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) for the function defined as: \[ f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} \] we need to ensure that the function is continuous at \( x = 0 \). For continuity at \( x = 0 \), we need to check the following condition: \[ \lim_{x \to 0} f(x) = f(0) \] ### Step 1: Calculate \( f(0) \) Since \( f(0) = k \), we have: \[ f(0) = k \] ### Step 2: Calculate \( \lim_{x \to 0} f(x) \) For \( x \neq 0 \), we have: \[ f(x) = x^2 \sin\left(\frac{1}{x}\right) \] Now, we need to find: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) \] ### Step 3: Evaluate the limit We know that \( \sin\left(\frac{1}{x}\right) \) oscillates between -1 and 1. Therefore, we can use the Squeeze Theorem to evaluate the limit: \[ -x^2 \leq x^2 \sin\left(\frac{1}{x}\right) \leq x^2 \] As \( x \to 0 \), both \( -x^2 \) and \( x^2 \) approach 0. Thus, by the Squeeze Theorem: \[ \lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0 \] ### Step 4: Set the limit equal to \( f(0) \) Now we have: \[ \lim_{x \to 0} f(x) = 0 \] For continuity at \( x = 0 \): \[ \lim_{x \to 0} f(x) = f(0) \implies 0 = k \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • APPLICATIONS OF DERIVATIVES

    ICSE|Exercise Multiple Choice Questions|47 Videos
  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x sin.(1)/(x)",",x ne0),(0",",x=0):}} and g(x)={{:(x^(2)sin.(1)/(x)",", x ne 0),(0",", x=0):}} Discuss the graph for f(x) and g(x), and evaluate the continuity and differentiabilityof f(x) and g(x).

Let g(x)=xf(x) , where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):} . At x=0 ,

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} is a continous at x=0, then

Show that the function defined by f(x) = {{:(x^(2) sin 1//x",",x ne 0),(0",",x = 0):} is differentiable for every value of x, but the derivative is not continuous for x=0

If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):} then at x = 0 the function f(x) is

If f(x)={{:((sinpix)/(5x)",",x ne0),(k,","0):} is continuous at x=0 , then k is equal to

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

Discuss the continuity of f(x) ={:{(sin""(1)/(x)", "x ne 0),(" "1", " x= 0):},

A function f :R to R is given by f (x) = {{:(x ^(4) (2+ sin ""(1)/(x)), x ne0),(0, x=0):}, then