Home
Class 12
MATHS
If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n...

If `f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):}` is continuous at `x=(pi)/(2)` , then

A

m=1 , n=0

B

`m=(npi)/(2)+1`

C

`n=(mpi)/(2)`

D

`m=n=(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( m \) and \( n \) such that the function \[ f(x) = \begin{cases} mx + 1 & \text{for } x \leq \frac{\pi}{2} \\ \sin x + n & \text{for } x \geq \frac{\pi}{2} \end{cases} \] is continuous at \( x = \frac{\pi}{2} \), we need to ensure that the left-hand limit (LHL), right-hand limit (RHL), and the function value at that point are all equal. ### Step 1: Calculate the Left-Hand Limit (LHL) The left-hand limit as \( x \) approaches \( \frac{\pi}{2} \) is given by the expression for \( f(x) \) when \( x \leq \frac{\pi}{2} \): \[ \text{LHL} = \lim_{x \to \frac{\pi}{2}^-} f(x) = m \left(\frac{\pi}{2}\right) + 1 \] ### Step 2: Calculate the Right-Hand Limit (RHL) The right-hand limit as \( x \) approaches \( \frac{\pi}{2} \) is given by the expression for \( f(x) \) when \( x \geq \frac{\pi}{2} \): \[ \text{RHL} = \lim_{x \to \frac{\pi}{2}^+} f(x) = \sin\left(\frac{\pi}{2}\right) + n = 1 + n \] ### Step 3: Calculate the Function Value at \( x = \frac{\pi}{2} \) The function value at \( x = \frac{\pi}{2} \) is: \[ f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + n = 1 + n \] ### Step 4: Set the Limits Equal for Continuity For \( f(x) \) to be continuous at \( x = \frac{\pi}{2} \), we need: \[ \text{LHL} = \text{RHL} = f\left(\frac{\pi}{2}\right) \] This gives us the equation: \[ m \left(\frac{\pi}{2}\right) + 1 = 1 + n \] ### Step 5: Simplify the Equation Subtracting 1 from both sides, we have: \[ m \left(\frac{\pi}{2}\right) = n \] ### Conclusion Thus, we find that: \[ n = m \frac{\pi}{2} \] ### Final Answer The condition for continuity at \( x = \frac{\pi}{2} \) is: \[ n = m \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • APPLICATIONS OF DERIVATIVES

    ICSE|Exercise Multiple Choice Questions|47 Videos
  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then find the relation between m and n.

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

If f(x)={((sin(cosx)-cosx)/((pi-2x)^2) ,, x!=pi/2),(k ,, x=pi/2):} is continuous at x=pi/2, then k is equal to

Let f(x)={{:(a,","x=(pi)/(2)),((sqrt(2x-pi))/(sqrt(9+sqrt(2x-pi))-b),","xgt(pi)/(2)):} . If f(x) is continuous at x=(pi)/(2) , then the value of (a^(2))/(5b) is

If f(x)={m x+1,xlt=pi/2sinx+n ,x >pi/2 is continuous at x=pi/2, then

f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), 0 le xlt (pi)/(2)),(b+3, x =(pi)/(2)),( (1+|cotx|)^((a tan x|)/b), (pi)/(2) lt xlt pi):} is continuous at x= pi/2 , then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .