Home
Class 12
MATHS
Lt(x rarra) (a^(x)-x^(a))/(x^(x)-a^(a)),...

`Lt_(x rarra) (a^(x)-x^(a))/(x^(x)-a^(a)), a gt 0` is equal to

A

`(log a-1)/(log a +1)`

B

`(1-log a )/(1+log a)`

C

`(1+ log a )/(1-loga )`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos
  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos

Similar Questions

Explore conceptually related problems

Lt_(x rarr 0) ((1+x)^(n)-nx-1)/(x^(2)) n gt 1 is euqal to

int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

The intergral int x cos^(-1) ((1-x^(2))/(1+x^(2))) dx, (x gt 0) is equal to

Lt_(x rarr0) (3^(2x)-1)/(x) is equal to

Lt_(x rarr1) (x^(3)+3x-4)/(2x^(2) + x-3) is equal to

Lt_(x to 0)(a^(x)-1)/(sqrt(1+x)-1) is equal to

Lt_(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

Lt_(x rarr oo) x tan^(-1)"" (2)/(x) equal to

Lt_(x rarr0)(tan3x)/(2x) is equal to

Lt_(xrarr 0) (sin^(-1)x)/(x) is equal to