Home
Class 12
MATHS
Lt(x rarr oo) 2^(x) sin ((p)/(2^(x))) ,p...

`Lt_(x rarr oo) 2^(x) sin ((p)/(2^(x))) ,p in R ` equal to

A

p log 2

B

p

C

`-p log 2`

D

`-p`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} 2^x \sin\left(\frac{p}{2^x}\right) \), we can follow these steps: ### Step 1: Analyze the expression As \( x \) approaches infinity, \( 2^x \) approaches infinity and \( \frac{p}{2^x} \) approaches 0. Therefore, we can rewrite the limit as: \[ \lim_{x \to \infty} 2^x \sin\left(\frac{p}{2^x}\right) \] This results in an indeterminate form of \( \infty \cdot 0 \). ### Step 2: Rewrite the limit To resolve the indeterminate form, we can rewrite the expression: \[ \lim_{x \to \infty} \frac{\sin\left(\frac{p}{2^x}\right)}{\frac{1}{2^x}} \] Now, as \( x \to \infty \), both the numerator \( \sin\left(\frac{p}{2^x}\right) \) and the denominator \( \frac{1}{2^x} \) approach 0, creating a \( \frac{0}{0} \) indeterminate form. ### Step 3: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit exists. #### Differentiate the numerator: Using the chain rule: \[ \frac{d}{dx} \left(\sin\left(\frac{p}{2^x}\right)\right) = \cos\left(\frac{p}{2^x}\right) \cdot \left(-\frac{p \ln(2)}{2^x}\right) \] #### Differentiate the denominator: \[ \frac{d}{dx} \left(\frac{1}{2^x}\right) = -\frac{\ln(2)}{2^x} \] ### Step 4: Substitute back into the limit Now substituting back into the limit: \[ \lim_{x \to \infty} \frac{\cos\left(\frac{p}{2^x}\right) \cdot \left(-\frac{p \ln(2)}{2^x}\right)}{-\frac{\ln(2)}{2^x}} = \lim_{x \to \infty} \frac{p \cos\left(\frac{p}{2^x}\right)}{1} \] ### Step 5: Evaluate the limit As \( x \to \infty \), \( \frac{p}{2^x} \) approaches 0, thus \( \cos\left(\frac{p}{2^x}\right) \) approaches \( \cos(0) = 1 \). Therefore: \[ \lim_{x \to \infty} p \cos\left(\frac{p}{2^x}\right) = p \cdot 1 = p \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} 2^x \sin\left(\frac{p}{2^x}\right) = p \]
Promotional Banner

Topper's Solved these Questions

  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos
  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos

Similar Questions

Explore conceptually related problems

Lt_(x rarr oo) x sin (3/x) is equal to

Lt_(x rarr oo) (sin ((1)/(x)))/(tan^(-1)((1)/(x))) is equal to

lim_(x rarr oo)e^(-x)x^(2)

Lt_(x rarr 0) ((1+x)^(n)-nx-1)/(x^(2)) n gt 1 is euqal to

Lt_(x rarr oo) x tan^(-1)"" (2)/(x) equal to

Lt_(x rarr 0) (tan3x)/(sin 2x) is equal to

Lt_(x rarr0)(sqrt(2+x)-sqrt(2))/(x)

Lt_(x rarr1) (x^(3)+3x-4)/(2x^(2) + x-3) is equal to

Lt_(x rarr0) (3^(2x)-1)/(x) is equal to

The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x))) is equal to