Home
Class 12
MATHS
Lt(x rarr oo) x tan^(-1)"" (2)/(x) equal...

`Lt_(x rarr oo) x tan^(-1)"" (2)/(x)` equal to

A

1

B

`(1)/(2)`

C

`(1)/(4)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} x \tan^{-1}\left(\frac{2}{x}\right) \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \frac{1}{t} \) We start by substituting \( x = \frac{1}{t} \). As \( x \to \infty \), \( t \to 0 \). Thus, we rewrite the limit: \[ \lim_{x \to \infty} x \tan^{-1}\left(\frac{2}{x}\right) = \lim_{t \to 0} \frac{1}{t} \tan^{-1}(2t) \] ### Step 2: Rewrite the limit Now, we can express the limit as: \[ \lim_{t \to 0} \frac{\tan^{-1}(2t)}{t} \] ### Step 3: Multiply and divide by 2 To use the known limit property, we multiply and divide by 2: \[ \lim_{t \to 0} \frac{\tan^{-1}(2t)}{t} = \lim_{t \to 0} \frac{\tan^{-1}(2t)}{2t} \cdot 2 \] ### Step 4: Apply the limit property We know from limit properties that: \[ \lim_{u \to 0} \frac{\tan^{-1}(u)}{u} = 1 \] In our case, \( u = 2t \). As \( t \to 0 \), \( 2t \to 0 \) as well. Therefore: \[ \lim_{t \to 0} \frac{\tan^{-1}(2t)}{2t} = 1 \] ### Step 5: Final calculation Now substituting back into our limit, we have: \[ \lim_{t \to 0} \frac{\tan^{-1}(2t)}{t} = 2 \cdot 1 = 2 \] ### Conclusion Thus, the final answer is: \[ \lim_{x \to \infty} x \tan^{-1}\left(\frac{2}{x}\right) = 2 \]
Promotional Banner

Topper's Solved these Questions

  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos
  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos

Similar Questions

Explore conceptually related problems

80.The value of Lt_(n rarr oo)n^((1)/(n)) is equal to :

Lt_(x rarr oo) x sin (3/x) is equal to

Lt_(x rarr 0) (tan3x)/(sin 2x) is equal to

Lt_(x rarr oo) (sin ((1)/(x)))/(tan^(-1)((1)/(x))) is equal to

Lt_(x rarr0) (3^(2x)-1)/(x) is equal to

If 0 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If x in (1,oo) then tan^(-1)((2x)/(1-x^(2))) equals

lim_(x rarr oo)e^(-x)x^(2)

Lt_(x rarr oo) 2^(x) sin ((p)/(2^(x))) ,p in R equal to

if x in (-oo,-1) then tan^(-1)(2x)/(1-x^(2)) equals