Home
Class 12
MATHS
Lt(x rarr oo) (sin ((1)/(x)))/(tan^(-1)(...

`Lt_(x rarr oo) (sin ((1)/(x)))/(tan^(-1)((1)/(x)))` is equal to

A

1

B

2

C

`(1)/(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos
  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos

Similar Questions

Explore conceptually related problems

"sin"("tan"^(-1)x) is equal to :

Lt_(n rarr oo)(1+(1)/(n))^(n)

Lt_(n rarr oo)(1+(1)/(n))^(n)

lim_(x rarr oo)(log(1+x))/(x)

Lt_(xrarr 0) (sin^(-1)x)/(x) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x))) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

sin(tan^(-1)x),|x| le 1 is equal to :