Home
Class 12
MATHS
Lt(x rarr oo) x sin (3/x) is equal to...

`Lt_(x rarr oo) x sin (3/x)` is equal to

A

`(1)/(3)`

B

3

C

1

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} x \sin\left(\frac{3}{x}\right) \), we can follow these steps: ### Step 1: Rewrite the limit We start with the expression: \[ \lim_{x \to \infty} x \sin\left(\frac{3}{x}\right) \] As \( x \) approaches infinity, \( \frac{3}{x} \) approaches 0. Therefore, we can rewrite the limit as: \[ \lim_{x \to \infty} x \sin\left(\frac{3}{x}\right) = \lim_{x \to \infty} \frac{\sin\left(\frac{3}{x}\right)}{\frac{1}{x}} \] ### Step 2: Identify the indeterminate form As \( x \to \infty \), \( \sin\left(\frac{3}{x}\right) \to \sin(0) = 0 \) and \( \frac{1}{x} \to 0 \). Thus, we have the indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have the \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. We differentiate the numerator and denominator: - The derivative of \( \sin\left(\frac{3}{x}\right) \) using the chain rule is: \[ \frac{d}{dx}\left(\sin\left(\frac{3}{x}\right)\right) = \cos\left(\frac{3}{x}\right) \cdot \left(-\frac{3}{x^2}\right) \] - The derivative of \( \frac{1}{x} \) is: \[ \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2} \] ### Step 4: Substitute the derivatives back into the limit Now we substitute these derivatives back into the limit: \[ \lim_{x \to \infty} \frac{\cos\left(\frac{3}{x}\right) \cdot \left(-\frac{3}{x^2}\right)}{-\frac{1}{x^2}} = \lim_{x \to \infty} 3 \cos\left(\frac{3}{x}\right) \] ### Step 5: Evaluate the limit As \( x \to \infty \), \( \frac{3}{x} \to 0 \), so: \[ \cos\left(\frac{3}{x}\right) \to \cos(0) = 1 \] Thus, we have: \[ \lim_{x \to \infty} 3 \cos\left(\frac{3}{x}\right) = 3 \cdot 1 = 3 \] ### Final Result Therefore, the limit is: \[ \lim_{x \to \infty} x \sin\left(\frac{3}{x}\right) = 3 \]
Promotional Banner

Topper's Solved these Questions

  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos
  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos

Similar Questions

Explore conceptually related problems

Lt_(xrarr 0) (sin^(-1)x)/(x) is equal to

Lt_(x rarr 0) (tan3x)/(sin 2x) is equal to

Lt_(x rarr0) (3^(2x)-1)/(x) is equal to

80.The value of Lt_(n rarr oo)n^((1)/(n)) is equal to :

Lt_(x rarr oo) x tan^(-1)"" (2)/(x) equal to

Lt_(x rarr0)(tan3x)/(2x) is equal to

Lt_(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

Lt_(x to pi)(sinx)/(x-pi) is equal to

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to

lim_(x -> oo) ((x-3)/(x+2))^x is equal to