Home
Class 12
MATHS
int(2)/( (e^(x) + e^(-x))^(2)) dx is equ...

`int(2)/( (e^(x) + e^(-x))^(2)) dx` is equal to

A

`int(1)/( e^(x)+e^(-x))+C`

B

`-(e^(-x))/( e^(x)+e^(-x))+C`

C

`(1)/( e^(x)-e^(-x))+C`

D

`-(1)/(( e^(x)+1)^(-x))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{2}{(e^x + e^{-x})^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{2}{(e^x + e^{-x})^2} \, dx \] ### Step 2: Simplify the Denominator We know that \( e^x + e^{-x} = 2 \cosh(x) \). Therefore, we can rewrite the integral as: \[ I = \int \frac{2}{(2 \cosh(x))^2} \, dx = \int \frac{2}{4 \cosh^2(x)} \, dx = \frac{1}{2} \int \text{sech}^2(x) \, dx \] ### Step 3: Integrate The integral of \( \text{sech}^2(x) \) is known: \[ \int \text{sech}^2(x) \, dx = \tanh(x) + C \] Thus, we have: \[ I = \frac{1}{2} \left( \tanh(x) + C \right) = \frac{1}{2} \tanh(x) + C \] ### Step 4: Final Result The final result of the integral is: \[ I = \frac{1}{2} \tanh(x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int x^3 e^(x^2) dx is equal to

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int (dx)/( e^(x) + e^(-x) +2) is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int(x e^x)/((1+x)^2)dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

ICSE-INTEGRALS -MULTIPLE CHOICE QUESTIONS
  1. int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

    Text Solution

    |

  2. int sin""(x)/(2) cos""(x)/(2) cos x dx is equal to

    Text Solution

    |

  3. int(dx)/( sin^(2)x cos^(2)x) is equal to

    Text Solution

    |

  4. int ( cos 2x - cos 2 alpha)/( cos x - cos alpha) dx is equal to

    Text Solution

    |

  5. int ( x )/( 4+ x^(4)) dx is equal to

    Text Solution

    |

  6. int(cos sqrt(x))/( sqrt(x)) dx is equal to

    Text Solution

    |

  7. If int x e^(kx^(2)) dx = ( 1)/( 4) e^(2x^(2)) + C, then the value of ...

    Text Solution

    |

  8. If int x^(6) sin ( 5x^(7)) dx = ( k )/( 5) cos ( 5x^(7))+C, then the v...

    Text Solution

    |

  9. If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C, then t...

    Text Solution

    |

  10. If int|x| dx = kx |x| + C, x cancel(=) 0, then the value of k is

    Text Solution

    |

  11. int cot x log ( sin x ) dx is equal to

    Text Solution

    |

  12. int( x + sin x )/( 1+ cos x) dx is equal to

    Text Solution

    |

  13. int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

    Text Solution

    |

  14. int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + ...

    Text Solution

    |

  15. inte^(x) ( 1- cot x + cot^(2) x) dx is eqal to

    Text Solution

    |

  16. If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C, then the val...

    Text Solution

    |

  17. int (dx)/( e^(x) + e^(-x) +2) is equal to

    Text Solution

    |

  18. int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ...

    Text Solution

    |

  19. int ( dx)/( sqrt( 2x - x^(2))) is equal to

    Text Solution

    |

  20. int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

    Text Solution

    |

  21. int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal t...

    Text Solution

    |