Home
Class 12
MATHS
int(pi //4)^(3pi//4) (dx)/( 1+ cosx) is...

`int_(pi //4)^(3pi//4) (dx)/( 1+ cosx) ` is equal to

A

`-2`

B

2

C

4

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x}, \] we will follow these steps: ### Step 1: Simplify the integrand We can use the identity \(1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right)\). Thus, we can rewrite the integrand: \[ \frac{1}{1 + \cos x} = \frac{1}{2 \cos^2\left(\frac{x}{2}\right)} = \frac{1}{2} \sec^2\left(\frac{x}{2}\right). \] ### Step 2: Rewrite the integral Substituting this back into the integral, we have: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{2} \sec^2\left(\frac{x}{2}\right) dx. \] ### Step 3: Change of variables Let \(u = \frac{x}{2}\), then \(dx = 2 du\). The limits change as follows: - When \(x = \frac{\pi}{4}\), \(u = \frac{\pi}{8}\). - When \(x = \frac{3\pi}{4}\), \(u = \frac{3\pi}{8}\). Thus, the integral becomes: \[ I = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sec^2(u) du. \] ### Step 4: Integrate The integral of \(\sec^2(u)\) is \(\tan(u)\): \[ I = \left[ \tan(u) \right]_{\frac{\pi}{8}}^{\frac{3\pi}{8}}. \] ### Step 5: Evaluate the limits Now we evaluate the limits: \[ I = \tan\left(\frac{3\pi}{8}\right) - \tan\left(\frac{\pi}{8}\right). \] ### Step 6: Use the tangent addition formula Using the identity \(\tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}\) with \(a = \frac{\pi}{4}\) and \(b = \frac{\pi}{8}\): \[ \tan\left(\frac{3\pi}{8}\right) = \tan\left(\frac{\pi}{4} + \frac{\pi}{8}\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{8}\right)}{1 - \tan\left(\frac{\pi}{4}\right) \tan\left(\frac{\pi}{8}\right)} = \frac{1 + \tan\left(\frac{\pi}{8}\right)}{1 - \tan\left(\frac{\pi}{8}\right)}. \] ### Step 7: Substitute back Thus, we have: \[ I = \frac{1 + \tan\left(\frac{\pi}{8}\right)}{1 - \tan\left(\frac{\pi}{8}\right)} - \tan\left(\frac{\pi}{8}\right). \] ### Step 8: Simplify After simplification, we find: \[ I = 2. \] ### Final Answer Thus, the value of the integral is: \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} = 2. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//4)^(pi//4) ( dx)/( 1+cos 2x) is equal to

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

Prove that : int_(pi//4)^(3pi//4) (1)/(1+cos x) dx = 2

int_(-pi/2)^(pi/2)cosx dx

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to

int_(-pi/4)^(pi/4)(secx)/(1+2^(x))dx .

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

ICSE-INTEGRALS -MULTIPLE CHOICE QUESTIONS
  1. int(pi //4)^(3pi//4) (dx)/( 1+ cosx) is equal to

    Text Solution

    |

  2. int sin""(x)/(2) cos""(x)/(2) cos x dx is equal to

    Text Solution

    |

  3. int(dx)/( sin^(2)x cos^(2)x) is equal to

    Text Solution

    |

  4. int ( cos 2x - cos 2 alpha)/( cos x - cos alpha) dx is equal to

    Text Solution

    |

  5. int ( x )/( 4+ x^(4)) dx is equal to

    Text Solution

    |

  6. int(cos sqrt(x))/( sqrt(x)) dx is equal to

    Text Solution

    |

  7. If int x e^(kx^(2)) dx = ( 1)/( 4) e^(2x^(2)) + C, then the value of ...

    Text Solution

    |

  8. If int x^(6) sin ( 5x^(7)) dx = ( k )/( 5) cos ( 5x^(7))+C, then the v...

    Text Solution

    |

  9. If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C, then t...

    Text Solution

    |

  10. If int|x| dx = kx |x| + C, x cancel(=) 0, then the value of k is

    Text Solution

    |

  11. int cot x log ( sin x ) dx is equal to

    Text Solution

    |

  12. int( x + sin x )/( 1+ cos x) dx is equal to

    Text Solution

    |

  13. int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

    Text Solution

    |

  14. int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + ...

    Text Solution

    |

  15. inte^(x) ( 1- cot x + cot^(2) x) dx is eqal to

    Text Solution

    |

  16. If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C, then the val...

    Text Solution

    |

  17. int (dx)/( e^(x) + e^(-x) +2) is equal to

    Text Solution

    |

  18. int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ...

    Text Solution

    |

  19. int ( dx)/( sqrt( 2x - x^(2))) is equal to

    Text Solution

    |

  20. int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

    Text Solution

    |

  21. int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal t...

    Text Solution

    |