Home
Class 12
MATHS
int(-pi //2)^(pi//2) sin |x|dx is equal ...

`int_(-pi //2)^(pi//2) sin |x|dx` is equal to

A

1

B

2

C

`-2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin |x| \, dx \), we can break it down step by step. ### Step 1: Understand the function \( \sin |x| \) The function \( \sin |x| \) is even because \( |x| \) is even. This means that \( \sin |x| = \sin x \) for \( x \geq 0 \) and \( \sin |x| = -\sin x \) for \( x < 0 \). Therefore, we can split the integral into two parts: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin |x| \, dx = \int_{-\frac{\pi}{2}}^{0} \sin |x| \, dx + \int_{0}^{\frac{\pi}{2}} \sin |x| \, dx \] ### Step 2: Evaluate the integral from \( -\frac{\pi}{2} \) to \( 0 \) For \( x \) in the interval \( [-\frac{\pi}{2}, 0] \), we have \( |x| = -x \). Thus, we can rewrite the first integral: \[ \int_{-\frac{\pi}{2}}^{0} \sin |x| \, dx = \int_{-\frac{\pi}{2}}^{0} \sin (-x) \, dx = -\int_{-\frac{\pi}{2}}^{0} \sin x \, dx \] ### Step 3: Evaluate the integral from \( 0 \) to \( \frac{\pi}{2} \) For \( x \) in the interval \( [0, \frac{\pi}{2}] \), we have \( |x| = x \). Thus, we can rewrite the second integral: \[ \int_{0}^{\frac{\pi}{2}} \sin |x| \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx \] ### Step 4: Combine the integrals Now we can combine the two parts: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin |x| \, dx = -\int_{-\frac{\pi}{2}}^{0} \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \sin x \, dx \] ### Step 5: Evaluate the integrals We know that: \[ \int \sin x \, dx = -\cos x \] Now we evaluate each integral: 1. For \( \int_{0}^{\frac{\pi}{2}} \sin x \, dx \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = [-\cos x]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] 2. For \( \int_{-\frac{\pi}{2}}^{0} \sin x \, dx \): \[ \int_{-\frac{\pi}{2}}^{0} \sin x \, dx = [-\cos x]_{-\frac{\pi}{2}}^{0} = -\cos(0) + \cos\left(-\frac{\pi}{2}\right) = -1 + 0 = -1 \] ### Step 6: Combine the results Now substituting back into our combined integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin |x| \, dx = -(-1) + 1 = 1 + 1 = 2 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin |x| \, dx = 2 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(-pi/2)^(pi/2) |sin x| dx

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4

int_(pi//2)^(3pi//2) [2cos x]dx is equal to

int_(0)^(1//2) |sin pi x|dx is equal to

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

Find our value of I = int_(-pi//2)^(pi//2) sin 2x dx :

int_(0)^(pi//2) sin 2x log cot x dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

Evaluate the following : int_(-pi//2)^(+pi//2) " sin 2x dx "

ICSE-INTEGRALS -MULTIPLE CHOICE QUESTIONS
  1. int(-pi //2)^(pi//2) sin |x|dx is equal to

    Text Solution

    |

  2. int sin""(x)/(2) cos""(x)/(2) cos x dx is equal to

    Text Solution

    |

  3. int(dx)/( sin^(2)x cos^(2)x) is equal to

    Text Solution

    |

  4. int ( cos 2x - cos 2 alpha)/( cos x - cos alpha) dx is equal to

    Text Solution

    |

  5. int ( x )/( 4+ x^(4)) dx is equal to

    Text Solution

    |

  6. int(cos sqrt(x))/( sqrt(x)) dx is equal to

    Text Solution

    |

  7. If int x e^(kx^(2)) dx = ( 1)/( 4) e^(2x^(2)) + C, then the value of ...

    Text Solution

    |

  8. If int x^(6) sin ( 5x^(7)) dx = ( k )/( 5) cos ( 5x^(7))+C, then the v...

    Text Solution

    |

  9. If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C, then t...

    Text Solution

    |

  10. If int|x| dx = kx |x| + C, x cancel(=) 0, then the value of k is

    Text Solution

    |

  11. int cot x log ( sin x ) dx is equal to

    Text Solution

    |

  12. int( x + sin x )/( 1+ cos x) dx is equal to

    Text Solution

    |

  13. int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

    Text Solution

    |

  14. int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + ...

    Text Solution

    |

  15. inte^(x) ( 1- cot x + cot^(2) x) dx is eqal to

    Text Solution

    |

  16. If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C, then the val...

    Text Solution

    |

  17. int (dx)/( e^(x) + e^(-x) +2) is equal to

    Text Solution

    |

  18. int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ...

    Text Solution

    |

  19. int ( dx)/( sqrt( 2x - x^(2))) is equal to

    Text Solution

    |

  20. int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

    Text Solution

    |

  21. int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal t...

    Text Solution

    |