Home
Class 12
MATHS
int(0)^(pi//2) ( f ( co x )) /( f (sinx ...

`int_(0)^(pi//2) ( f ( co x )) /( f (sinx ) + f(co sx) ) dx` is equal to

A

0

B

`(pi)/(2)`

C

`(pi)/( 4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} \, dx, \] we will use a property of definite integrals. ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} \, dx. \] ### Step 2: Use the Integral Property We can use the property of integrals that states \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In our case, we will substitute \( x \) with \( \frac{\pi}{2} - x \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 3: Simplify the Integral Now, we know that \[ \cos\left(\frac{\pi}{2} - x\right) = \sin x \quad \text{and} \quad \sin\left(\frac{\pi}{2} - x\right) = \cos x. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\cos x + \sin x} \, dx. \] ### Step 4: Add the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\cos x + \sin x}{\sin x + \cos x} \right) \, dx. \] ### Step 5: Simplify Further The expression simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 6: Evaluate the Integral Now we can evaluate the integral: \[ 2I = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 7: Solve for \( I \) Now, we can solve for \( I \): \[ I = \frac{\pi}{4}. \] ### Conclusion Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sinx cos x dx=?

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

int_(0)^(pi//4)e^( sinx)(((x cos^(3)x- sinx))/( cos^(2)x))dx

int_(0)^(pi) cos 2x . Log (sinx) dx

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

The valueof int_((pi)/(6))^((pi)/(3))e^(sec^(2)x)(sinx)/(cos^(3)x)dx is equal to

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

ICSE-INTEGRALS -MULTIPLE CHOICE QUESTIONS
  1. int(0)^(pi//2) ( f ( co x )) /( f (sinx ) + f(co sx) ) dx is equal to

    Text Solution

    |

  2. int sin""(x)/(2) cos""(x)/(2) cos x dx is equal to

    Text Solution

    |

  3. int(dx)/( sin^(2)x cos^(2)x) is equal to

    Text Solution

    |

  4. int ( cos 2x - cos 2 alpha)/( cos x - cos alpha) dx is equal to

    Text Solution

    |

  5. int ( x )/( 4+ x^(4)) dx is equal to

    Text Solution

    |

  6. int(cos sqrt(x))/( sqrt(x)) dx is equal to

    Text Solution

    |

  7. If int x e^(kx^(2)) dx = ( 1)/( 4) e^(2x^(2)) + C, then the value of ...

    Text Solution

    |

  8. If int x^(6) sin ( 5x^(7)) dx = ( k )/( 5) cos ( 5x^(7))+C, then the v...

    Text Solution

    |

  9. If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C, then t...

    Text Solution

    |

  10. If int|x| dx = kx |x| + C, x cancel(=) 0, then the value of k is

    Text Solution

    |

  11. int cot x log ( sin x ) dx is equal to

    Text Solution

    |

  12. int( x + sin x )/( 1+ cos x) dx is equal to

    Text Solution

    |

  13. int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

    Text Solution

    |

  14. int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + ...

    Text Solution

    |

  15. inte^(x) ( 1- cot x + cot^(2) x) dx is eqal to

    Text Solution

    |

  16. If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C, then the val...

    Text Solution

    |

  17. int (dx)/( e^(x) + e^(-x) +2) is equal to

    Text Solution

    |

  18. int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ...

    Text Solution

    |

  19. int ( dx)/( sqrt( 2x - x^(2))) is equal to

    Text Solution

    |

  20. int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

    Text Solution

    |

  21. int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal t...

    Text Solution

    |