Home
Class 12
MATHS
int ( cos 2x - cos 2 alpha)/( cos x - co...

`int ( cos 2x - cos 2 alpha)/( cos x - cos alpha) dx ` is equal to

A

`2 ( sin x + x cos alpha) + C`

B

`2 ( sin x - x cos alpha ) + C`

C

` 2 ( sin x + 2 x cos alpha) = C`

D

` 2 ( sin x - 2 x cos alpha ) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} \, dx, \] we can start by applying the double angle formula for cosine. The double angle formula states that \[ \cos 2\theta = 2\cos^2 \theta - 1. \] ### Step 1: Rewrite the integrand using the double angle formula Using this formula, we can rewrite \(\cos 2x\) and \(\cos 2\alpha\): \[ \cos 2x = 2\cos^2 x - 1, \] \[ \cos 2\alpha = 2\cos^2 \alpha - 1. \] Substituting these into the integral gives: \[ \int \frac{(2\cos^2 x - 1) - (2\cos^2 \alpha - 1)}{\cos x - \cos \alpha} \, dx. \] ### Step 2: Simplify the expression Now simplify the numerator: \[ (2\cos^2 x - 1) - (2\cos^2 \alpha - 1) = 2\cos^2 x - 2\cos^2 \alpha. \] This can be factored: \[ = 2(\cos^2 x - \cos^2 \alpha). \] Thus, the integral becomes: \[ \int \frac{2(\cos^2 x - \cos^2 \alpha)}{\cos x - \cos \alpha} \, dx. \] ### Step 3: Factor the numerator Using the identity \(a^2 - b^2 = (a - b)(a + b)\), we can factor \(\cos^2 x - \cos^2 \alpha\): \[ \cos^2 x - \cos^2 \alpha = (\cos x - \cos \alpha)(\cos x + \cos \alpha). \] Substituting this back into the integral gives: \[ \int \frac{2(\cos x - \cos \alpha)(\cos x + \cos \alpha)}{\cos x - \cos \alpha} \, dx. \] ### Step 4: Cancel the common terms The \((\cos x - \cos \alpha)\) terms in the numerator and denominator cancel out (as long as \(\cos x \neq \cos \alpha\)): \[ \int 2(\cos x + \cos \alpha) \, dx. \] ### Step 5: Integrate Now we can integrate: \[ = 2\int (\cos x + \cos \alpha) \, dx = 2\left(\int \cos x \, dx + \int \cos \alpha \, dx\right). \] The integral of \(\cos x\) is \(\sin x\) and the integral of \(\cos \alpha\) is \(\cos \alpha \cdot x\): \[ = 2(\sin x + x \cos \alpha) + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} \, dx = 2\sin x + 2x \cos \alpha + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dx

int cos 4x. cos 2x dx

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dxdot

If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =

int (cos 5x + cos 4x)/(1-2cos3x) dx

int(cos 2x)/((sin x + cos x)^(2)) dx " is equal to : "

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

Integrate the functions (cos2x-cos2alpha)/(cosx-cosalpha)

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

int(sin x+cos x)/(sin(x -alpha))dx is equal to

ICSE-INTEGRALS -MULTIPLE CHOICE QUESTIONS
  1. int sin""(x)/(2) cos""(x)/(2) cos x dx is equal to

    Text Solution

    |

  2. int(dx)/( sin^(2)x cos^(2)x) is equal to

    Text Solution

    |

  3. int ( cos 2x - cos 2 alpha)/( cos x - cos alpha) dx is equal to

    Text Solution

    |

  4. int ( x )/( 4+ x^(4)) dx is equal to

    Text Solution

    |

  5. int(cos sqrt(x))/( sqrt(x)) dx is equal to

    Text Solution

    |

  6. If int x e^(kx^(2)) dx = ( 1)/( 4) e^(2x^(2)) + C, then the value of ...

    Text Solution

    |

  7. If int x^(6) sin ( 5x^(7)) dx = ( k )/( 5) cos ( 5x^(7))+C, then the v...

    Text Solution

    |

  8. If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C, then t...

    Text Solution

    |

  9. If int|x| dx = kx |x| + C, x cancel(=) 0, then the value of k is

    Text Solution

    |

  10. int cot x log ( sin x ) dx is equal to

    Text Solution

    |

  11. int( x + sin x )/( 1+ cos x) dx is equal to

    Text Solution

    |

  12. int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

    Text Solution

    |

  13. int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + ...

    Text Solution

    |

  14. inte^(x) ( 1- cot x + cot^(2) x) dx is eqal to

    Text Solution

    |

  15. If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C, then the val...

    Text Solution

    |

  16. int (dx)/( e^(x) + e^(-x) +2) is equal to

    Text Solution

    |

  17. int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ...

    Text Solution

    |

  18. int ( dx)/( sqrt( 2x - x^(2))) is equal to

    Text Solution

    |

  19. int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

    Text Solution

    |

  20. int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal t...

    Text Solution

    |