Home
Class 12
MATHS
int ( x )/( 4+ x^(4)) dx is equal to...

`int ( x )/( 4+ x^(4)) dx` is equal to

A

`(1)/( 4) tan^(-1) x^(2) + C`

B

`(1)/( 2) tan^(-1) ""(x^(2)/(2)) +C`

C

`(1)/(4) tan^(-1) ( (x^(2))/( 2)) + C`

D

`(1)/(2) tan^(-1) 2 x^(2) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x}{4 + x^4} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{x}{4 + x^4} \, dx \] Notice that \(x^4\) can be rewritten as \((x^2)^2\). Thus, we can express the denominator as: \[ 4 + x^4 = 4 + (x^2)^2 \] ### Step 2: Use Substitution Let’s use the substitution \(u = x^2\). Then, the differential \(du\) is given by: \[ du = 2x \, dx \quad \Rightarrow \quad dx = \frac{du}{2x} \] Now, substituting \(x = \sqrt{u}\) gives us: \[ dx = \frac{du}{2\sqrt{u}} \] ### Step 3: Substitute in the Integral Substituting \(u\) into the integral: \[ I = \int \frac{\sqrt{u}}{4 + u^2} \cdot \frac{du}{2\sqrt{u}} = \int \frac{1}{2(4 + u^2)} \, du \] This simplifies to: \[ I = \frac{1}{2} \int \frac{1}{4 + u^2} \, du \] ### Step 4: Integrate The integral \(\int \frac{1}{4 + u^2} \, du\) can be solved using the formula: \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] Here, \(a^2 = 4\) implies \(a = 2\). Thus, we have: \[ \int \frac{1}{4 + u^2} \, du = \frac{1}{2} \tan^{-1}\left(\frac{u}{2}\right) + C \] ### Step 5: Substitute Back Now substituting back \(u = x^2\): \[ I = \frac{1}{2} \left( \frac{1}{2} \tan^{-1}\left(\frac{x^2}{2}\right) + C \right) = \frac{1}{4} \tan^{-1}\left(\frac{x^2}{2}\right) + C \] ### Final Answer Thus, the final result is: \[ \int \frac{x}{4 + x^4} \, dx = \frac{1}{4} \tan^{-1}\left(\frac{x^2}{2}\right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int ((x+2)/(x+4))^2 e^x dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a constant of integration)

int ( sin^(4) x - cos ^(4) x ) dx is equal to

int(1)/(x(x^(4)-1))dx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int(x^(4)+1)/(x^(6)+1)dx is equal to

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to

int_2^4 1/x dx is equal to

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )