Home
Class 12
MATHS
int(cos sqrt(x))/( sqrt(x)) dx is equal...

`int(cos sqrt(x))/( sqrt(x)) dx ` is equal to

A

` 2 cos sqrt(x) + C`

B

`2 sin sqrt(x) + C`

C

` - 2 sin sqrt( x) + C`

D

` sin sqrt( x) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos(\sqrt{x})}{\sqrt{x}} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we can express \( x \) in terms of \( t \): \[ x = t^2 \] Now, we need to find \( dx \) in terms of \( dt \): \[ dx = 2t \, dt \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral in terms of \( t \): \[ \sqrt{x} = t \quad \text{and} \quad dx = 2t \, dt \] Substituting these into the integral gives: \[ \int \frac{\cos(\sqrt{x})}{\sqrt{x}} \, dx = \int \frac{\cos(t)}{t} (2t \, dt) \] This simplifies to: \[ \int 2 \cos(t) \, dt \] ### Step 3: Integrate Now, we can integrate: \[ \int 2 \cos(t) \, dt = 2 \sin(t) + C \] where \( C \) is the constant of integration. ### Step 4: Back Substitute Now, we substitute back \( t = \sqrt{x} \): \[ 2 \sin(t) + C = 2 \sin(\sqrt{x}) + C \] ### Final Answer Thus, the integral \( \int \frac{\cos(\sqrt{x})}{\sqrt{x}} \, dx \) is equal to: \[ \boxed{2 \sin(\sqrt{x}) + C} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

inte^(sqrt(x))dx is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int(1+x)/(1+3sqrt(x))dx is equal to

int(x)/(sqrt(x-a))dx

int(secx)/(sqrt(cos2x)) dx is equal to

int sqrt((x)/( 1-x))dx is equal to

int sqrt(e^(x)-1)dx is equal to

int_(a)^(b) ( sqrt(x))/( sqrt(x) + sqrt(a+b-x))dx is equal to

int(3sqrt(x)+(1)/(3sqrt(x)))^(3)dx equals