Home
Class 12
MATHS
int( x + sin x )/( 1+ cos x) dx is equal...

`int( x + sin x )/( 1+ cos x) dx` is equal to

A

`log | 1+ cos x | +C`

B

` log | x | sin x | + C`

C

`x - tan ""(x)/( 2)+c`

D

`x tan""(x)/( 2) +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x + \sin x}{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator We can use the trigonometric identity: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral as: \[ \int \frac{x + \sin x}{2 \cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Split the Integral Now we can separate the integral into two parts: \[ \int \frac{x}{2 \cos^2\left(\frac{x}{2}\right)} \, dx + \int \frac{\sin x}{2 \cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 3: Simplify Each Integral The first integral becomes: \[ \frac{1}{2} \int x \sec^2\left(\frac{x}{2}\right) \, dx \] The second integral can be rewritten using the identity \( \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \): \[ \frac{1}{2} \int \frac{2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)}{2 \cos^2\left(\frac{x}{2}\right)} \, dx = \int \tan\left(\frac{x}{2}\right) \, dx \] ### Step 4: Integrate the First Part Using Integration by Parts For the integral \( \frac{1}{2} \int x \sec^2\left(\frac{x}{2}\right) \, dx \), we will use integration by parts: Let \( u = x \) and \( dv = \sec^2\left(\frac{x}{2}\right) \, dx \). Then, \( du = dx \) and \( v = 2 \tan\left(\frac{x}{2}\right) \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \frac{1}{2} \left( x \cdot 2 \tan\left(\frac{x}{2}\right) - \int 2 \tan\left(\frac{x}{2}\right) \, dx \right) \] ### Step 5: Simplify the Result The integral of \( \tan\left(\frac{x}{2}\right) \) is: \[ - \log\left|\cos\left(\frac{x}{2}\right)\right| + C \] Thus, we can combine everything: \[ \int \frac{x + \sin x}{1 + \cos x} \, dx = x \tan\left(\frac{x}{2}\right) - \log\left|\cos\left(\frac{x}{2}\right)\right| + C \] ### Final Result The final result can be simplified to: \[ x \tan\left(\frac{x}{2}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

int(x sin x+cos x)/(x cos x)dx

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

int ((1-sin x )/( 1- cos x )) e^(x) dx is equal to

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

int ( sin^(4) x - cos ^(4) x ) dx is equal to

int(sin x)/( sqrt(1+cos x))dx=?

int(1)/(cos x - sin x )dx is equal to

int ( sin ( log x) + cos ( log x ) dx is equal to

int sin x cos(cos x)dx