Home
Class 12
MATHS
int((1-x)/(1+x^(2)))^(2) e^(x) dx is equ...

`int((1-x)/(1+x^(2)))^(2) e^(x) dx` is equal to

A

`(e^(x))/( 1+x^(2)) +C`

B

`-(e^(x))/( 1+x^(2)) + C`

C

`( e^(x))/( ( 1+ x^(2))^(2)) + C`

D

`-( e^(x))/( ( 1+ x^(2))^(2)) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( \frac{1-x}{(1+x^2)^2} \right) e^x \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \left( \frac{1-x}{(1+x^2)^2} \right) e^x \, dx \] ### Step 2: Expand the Numerator We can rewrite the integrand by expanding the numerator: \[ \frac{1-x}{(1+x^2)^2} = \frac{1}{(1+x^2)^2} - \frac{x}{(1+x^2)^2} \] Thus, we can split the integral: \[ \int \left( \frac{1}{(1+x^2)^2} - \frac{x}{(1+x^2)^2} \right) e^x \, dx \] This gives us two separate integrals: \[ \int \frac{1}{(1+x^2)^2} e^x \, dx - \int \frac{x}{(1+x^2)^2} e^x \, dx \] ### Step 3: Identify the Functions Let \( f(x) = \frac{1}{1+x^2} \). Then, the derivative \( f'(x) \) is: \[ f'(x) = -\frac{2x}{(1+x^2)^2} \] This means we can relate our integrals to the formula for integration by parts. ### Step 4: Use the Integration by Parts Formula We recall the formula for integration: \[ \int e^x f'(x) \, dx = e^x f(x) + C \] In our case, we can use this directly for the second integral: \[ \int \frac{x}{(1+x^2)^2} e^x \, dx = -\int e^x f'(x) \, dx \] So, we can write: \[ \int \frac{x}{(1+x^2)^2} e^x \, dx = -e^x f(x) + C \] ### Step 5: Combine the Results Now, we can combine the results of our integrals: \[ \int \frac{1}{(1+x^2)^2} e^x \, dx - \left(-e^x f(x)\right) \] ### Step 6: Final Result Thus, the integral evaluates to: \[ \int \left( \frac{1-x}{(1+x^2)^2} \right) e^x \, dx = e^x \left( \frac{1}{1+x^2} \right) + C \] ### Final Answer The final answer is: \[ e^x \cdot \frac{1}{1+x^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int(x+1)^(2)e^(x)dx is equal to

The value of int((1+x))/(x(1+x e^(x))^(2))dx , is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to