Home
Class 12
MATHS
If int ( 1+ cos 4x)/( cot x - tan x ) dx...

If `int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C`, then the value of k is

A

`(1)/( 4)`

B

`- (1)/(2)`

C

`- ( 1)/( 8 )`

D

` - (1)/( 4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1 + \cos 4x}{\cot x - \tan x} \, dx, \] we will simplify the expression step by step and find the value of \( k \) in the equation \[ \int \frac{1 + \cos 4x}{\cot x - \tan x} \, dx = k \cos 4x + C. \] ### Step 1: Simplify the numerator We know that \[ \cos 4x = 2 \cos^2 2x - 1. \] Thus, we can rewrite the numerator: \[ 1 + \cos 4x = 1 + (2 \cos^2 2x - 1) = 2 \cos^2 2x. \] ### Step 2: Simplify the denominator The denominator \( \cot x - \tan x \) can be rewritten as: \[ \cot x = \frac{\cos x}{\sin x}, \quad \tan x = \frac{\sin x}{\cos x}. \] So, \[ \cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} = \frac{\cos 2x}{\sin x \cos x}. \] ### Step 3: Rewrite the integral Now we can substitute the simplified numerator and denominator into the integral: \[ \int \frac{2 \cos^2 2x}{\frac{\cos 2x}{\sin x \cos x}} \, dx = \int \frac{2 \cos^2 2x \cdot \sin x \cos x}{\cos 2x} \, dx. \] ### Step 4: Cancel terms We can cancel \( \cos 2x \) from the numerator and denominator: \[ \int 2 \cos 2x \cdot \sin x \cos x \, dx. \] ### Step 5: Use the double angle identity Recall that \( 2 \sin x \cos x = \sin 2x \). Thus, we can rewrite the integral as: \[ \int \cos 2x \cdot \sin 2x \, dx. \] ### Step 6: Use the identity for sine The expression \( \cos 2x \cdot \sin 2x \) can be rewritten using the identity: \[ \sin 2x = 2 \sin x \cos x, \] so we have: \[ \int \frac{1}{2} \sin 4x \, dx. \] ### Step 7: Integrate Now we can integrate: \[ \frac{1}{2} \int \sin 4x \, dx = -\frac{1}{2} \cdot \frac{1}{4} \cos 4x + C = -\frac{1}{8} \cos 4x + C. \] ### Step 8: Identify \( k \) From our integration result: \[ -\frac{1}{8} \cos 4x + C, \] we can see that \( k = -\frac{1}{8} \). ### Final Answer Thus, the value of \( k \) is \[ \boxed{-\frac{1}{8}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

If int ( 1+cos 8x)/( tan 2x-cot 2x)dx = k cos 8x+ C , then k equals

int(cos 4x-1)/(cot x-tanx)dx is equal to

If int(cos 6x+cos 9x)/(1-2 cos 5x)dx=-(sin 4x)/(k)-sin x+C , then the value of k is .......... .

int(1)/(cos x . cot x ) dx

If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C , then the value of k is

If int x^(6) sin ( 5x^(7)) dx = ( k )/( 5) cos ( 5x^(7))+C , then the value of k is

int(tan x + cos x)^(2) dx

int (cos 5x + cos 4x)/(1-2cos3x) dx

int cos 4x. cos 2x dx

int cos 2x . cos 4x . cos 6x dx

ICSE-INTEGRALS -MULTIPLE CHOICE QUESTIONS
  1. int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + ...

    Text Solution

    |

  2. inte^(x) ( 1- cot x + cot^(2) x) dx is eqal to

    Text Solution

    |

  3. If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C, then the val...

    Text Solution

    |

  4. int (dx)/( e^(x) + e^(-x) +2) is equal to

    Text Solution

    |

  5. int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ...

    Text Solution

    |

  6. int ( dx)/( sqrt( 2x - x^(2))) is equal to

    Text Solution

    |

  7. int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

    Text Solution

    |

  8. int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal t...

    Text Solution

    |

  9. int( dx )/( x ( x^(7) +1)) is equal to

    Text Solution

    |

  10. int ( sin^(4) x - cos ^(4) x ) dx is equal to

    Text Solution

    |

  11. int ((tan^(-1) x )^(3))/( 1+x^(2)) dx is equal to a) 3 ( tan^(-1) x ...

    Text Solution

    |

  12. inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

    Text Solution

    |

  13. int ( sin ( log x) + cos ( log x ) dx is equal to

    Text Solution

    |

  14. int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

    Text Solution

    |

  15. int (f'(x))/( f(x) log(f(x)))dx is equal to

    Text Solution

    |

  16. intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/...

    Text Solution

    |

  17. int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^...

    Text Solution

    |

  18. int ((1-sin x )/( 1- cos x )) e^(x) dx is equal to

    Text Solution

    |

  19. int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

    Text Solution

    |

  20. If int(0)^(40) (dx)/( 2x +1) = log k, then the value of k is

    Text Solution

    |