Home
Class 12
MATHS
int ( dx)/( sqrt( 2x - x^(2))) is equal...

`int ( dx)/( sqrt( 2x - x^(2)))` is equal to

A

`sin^(-1) ( x-1) +C`

B

` sin^(-1) ( x+ 1) + C`

C

` - sqrt( 2x - x^(2)) + C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{\sqrt{2x - x^2}} \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\sqrt{2x - x^2}} \] We can rearrange the expression under the square root: \[ 2x - x^2 = - (x^2 - 2x) = - (x^2 - 2x + 1 - 1) = - ((x - 1)^2 - 1) \] Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{\sqrt{1 - (x - 1)^2}} \] ### Step 2: Use a Trigonometric Substitution Recognizing the form of the integral, we can use the substitution: \[ x - 1 = \sin(\theta) \quad \Rightarrow \quad dx = \cos(\theta) d\theta \] This transforms our integral into: \[ I = \int \frac{\cos(\theta) d\theta}{\sqrt{1 - \sin^2(\theta)}} \] Since \( \sqrt{1 - \sin^2(\theta)} = \cos(\theta) \), we have: \[ I = \int \frac{\cos(\theta) d\theta}{\cos(\theta)} = \int d\theta \] ### Step 3: Integrate The integral of \( d\theta \) is simply: \[ I = \theta + C \] ### Step 4: Back Substitute Now we need to substitute back for \( \theta \): \[ \theta = \arcsin(x - 1) \] Thus, we have: \[ I = \arcsin(x - 1) + C \] ### Final Answer The final result for the integral is: \[ \int \frac{dx}{\sqrt{2x - x^2}} = \arcsin(x - 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

int(dx)/(sqrt(x-x^(2))) equal is :

int (x^2-2)/(x^3 sqrt(x^2-1)) dx is equal to

int sqrt((x)/( 1-x))dx is equal to

Find int (dx)/sqrt(3-2x-x^2)

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

int_(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int_0^a(dx)/(sqrt(a x-x^2))

ICSE-INTEGRALS -MULTIPLE CHOICE QUESTIONS
  1. int (dx)/( e^(x) + e^(-x) +2) is equal to

    Text Solution

    |

  2. int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ...

    Text Solution

    |

  3. int ( dx)/( sqrt( 2x - x^(2))) is equal to

    Text Solution

    |

  4. int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

    Text Solution

    |

  5. int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal t...

    Text Solution

    |

  6. int( dx )/( x ( x^(7) +1)) is equal to

    Text Solution

    |

  7. int ( sin^(4) x - cos ^(4) x ) dx is equal to

    Text Solution

    |

  8. int ((tan^(-1) x )^(3))/( 1+x^(2)) dx is equal to a) 3 ( tan^(-1) x ...

    Text Solution

    |

  9. inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

    Text Solution

    |

  10. int ( sin ( log x) + cos ( log x ) dx is equal to

    Text Solution

    |

  11. int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

    Text Solution

    |

  12. int (f'(x))/( f(x) log(f(x)))dx is equal to

    Text Solution

    |

  13. intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/...

    Text Solution

    |

  14. int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^...

    Text Solution

    |

  15. int ((1-sin x )/( 1- cos x )) e^(x) dx is equal to

    Text Solution

    |

  16. int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

    Text Solution

    |

  17. If int(0)^(40) (dx)/( 2x +1) = log k, then the value of k is

    Text Solution

    |

  18. int(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal to

    Text Solution

    |

  19. If int(0)^(k) ( 1)/(9x^(2) + 1) dx = ( pi )/( 12) , then k is equal to

    Text Solution

    |

  20. int(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

    Text Solution

    |