Home
Class 12
MATHS
int ( x^(2) + 1)/( x^(2) - 1)dx is equa...

`int ( x^(2) + 1)/( x^(2) - 1)dx` is equal to

A

`x + log | ( x +1)/( x-1) | +C`

B

`x + log | ( x-1)/( x+ 1)| +C`

C

`log | ( x-1) ( x +1) | +C`

D

` log | x^(2) + 1| +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2 + 1}{x^2 - 1} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{x^2 + 1}{x^2 - 1} = \frac{x^2 - 1 + 2}{x^2 - 1} = \frac{x^2 - 1}{x^2 - 1} + \frac{2}{x^2 - 1} \] This simplifies to: \[ 1 + \frac{2}{x^2 - 1} \] ### Step 2: Set up the integral Now we can express the integral as: \[ \int \left( 1 + \frac{2}{x^2 - 1} \right) \, dx = \int 1 \, dx + \int \frac{2}{x^2 - 1} \, dx \] ### Step 3: Integrate the first term The integral of 1 is straightforward: \[ \int 1 \, dx = x \] ### Step 4: Integrate the second term Next, we need to integrate \( \frac{2}{x^2 - 1} \). We can factor \( x^2 - 1 \) as \( (x - 1)(x + 1) \). We will use partial fraction decomposition: \[ \frac{2}{x^2 - 1} = \frac{2}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1} \] Multiplying through by \( (x - 1)(x + 1) \) gives: \[ 2 = A(x + 1) + B(x - 1) \] Setting \( x = 1 \): \[ 2 = A(2) + B(0) \implies A = 1 \] Setting \( x = -1 \): \[ 2 = A(0) + B(-2) \implies B = -1 \] Thus, we have: \[ \frac{2}{x^2 - 1} = \frac{1}{x - 1} - \frac{1}{x + 1} \] ### Step 5: Integrate the partial fractions Now we can integrate: \[ \int \left( \frac{1}{x - 1} - \frac{1}{x + 1} \right) \, dx = \int \frac{1}{x - 1} \, dx - \int \frac{1}{x + 1} \, dx \] This results in: \[ \log |x - 1| - \log |x + 1| = \log \left| \frac{x - 1}{x + 1} \right| \] ### Step 6: Combine the results Combining all parts, we have: \[ \int \frac{x^2 + 1}{x^2 - 1} \, dx = x + 2 \log \left| \frac{x - 1}{x + 1} \right| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{x^2 + 1}{x^2 - 1} \, dx = x + 2 \log \left| \frac{x - 1}{x + 1} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int(1)/(x^(2)+4x+13)dx is equal to

int_(-1)^(0) (dx)/( x^(2) + 2x+ 2) is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

ICSE-INTEGRALS -MULTIPLE CHOICE QUESTIONS
  1. int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ...

    Text Solution

    |

  2. int ( dx)/( sqrt( 2x - x^(2))) is equal to

    Text Solution

    |

  3. int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

    Text Solution

    |

  4. int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal t...

    Text Solution

    |

  5. int( dx )/( x ( x^(7) +1)) is equal to

    Text Solution

    |

  6. int ( sin^(4) x - cos ^(4) x ) dx is equal to

    Text Solution

    |

  7. int ((tan^(-1) x )^(3))/( 1+x^(2)) dx is equal to a) 3 ( tan^(-1) x ...

    Text Solution

    |

  8. inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

    Text Solution

    |

  9. int ( sin ( log x) + cos ( log x ) dx is equal to

    Text Solution

    |

  10. int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

    Text Solution

    |

  11. int (f'(x))/( f(x) log(f(x)))dx is equal to

    Text Solution

    |

  12. intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/...

    Text Solution

    |

  13. int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^...

    Text Solution

    |

  14. int ((1-sin x )/( 1- cos x )) e^(x) dx is equal to

    Text Solution

    |

  15. int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

    Text Solution

    |

  16. If int(0)^(40) (dx)/( 2x +1) = log k, then the value of k is

    Text Solution

    |

  17. int(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal to

    Text Solution

    |

  18. If int(0)^(k) ( 1)/(9x^(2) + 1) dx = ( pi )/( 12) , then k is equal to

    Text Solution

    |

  19. int(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

    Text Solution

    |

  20. The value of int(pi//6)^(pi//3) (1)/( sin 2x) dx is

    Text Solution

    |