Home
Class 12
MATHS
int ( sin^(4) x - cos ^(4) x ) dx is eq...

`int ( sin^(4) x - cos ^(4) x ) dx ` is equal to

A

`(1)/(2) cos 2x +C`

B

`- ( 1)/(2) cos 2x +C`

C

` (1)/(2) sin 2x + C`

D

` - (1)/(2) sin 2x + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\sin^4 x - \cos^4 x) \, dx \), we can follow these steps: ### Step 1: Use the difference of squares identity We can rewrite \( \sin^4 x - \cos^4 x \) using the identity \( a^2 - b^2 = (a - b)(a + b) \): \[ \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) \] ### Step 2: Simplify using the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 x + \cos^2 x = 1 \] Thus, we can simplify our expression: \[ \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(1) = \sin^2 x - \cos^2 x \] ### Step 3: Substitute for \( \cos^2 x \) Next, we can express \( \cos^2 x \) in terms of \( \sin^2 x \): \[ \cos^2 x = 1 - \sin^2 x \] Substituting this into our integral gives: \[ \sin^2 x - \cos^2 x = \sin^2 x - (1 - \sin^2 x) = 2\sin^2 x - 1 \] ### Step 4: Rewrite the integral Now, we can rewrite our integral as: \[ \int (\sin^2 x - \cos^2 x) \, dx = \int (2\sin^2 x - 1) \, dx \] ### Step 5: Use the double angle identity We can use the double angle identity for cosine, which states: \[ \cos 2x = 1 - 2\sin^2 x \quad \text{or} \quad 2\sin^2 x - 1 = -\cos 2x \] Thus, we can rewrite our integral as: \[ \int (2\sin^2 x - 1) \, dx = \int -\cos 2x \, dx \] ### Step 6: Integrate Now we can integrate: \[ \int -\cos 2x \, dx = -\frac{1}{2} \sin 2x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int (\sin^4 x - \cos^4 x) \, dx = -\frac{1}{2} \sin 2x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

int ( sin ( log x) + cos ( log x ) dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is equal to

int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx is equal to

int(cos 2x)/((sin x + cos x)^(2)) dx " is equal to : "

int(1)/(sin^(2)x-4 cos^(2)x)dx

int( x + sin x )/( 1+ cos x) dx is equal to

int(1)/(cos x - sin x )dx is equal to

ICSE-INTEGRALS -MULTIPLE CHOICE QUESTIONS
  1. int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal t...

    Text Solution

    |

  2. int( dx )/( x ( x^(7) +1)) is equal to

    Text Solution

    |

  3. int ( sin^(4) x - cos ^(4) x ) dx is equal to

    Text Solution

    |

  4. int ((tan^(-1) x )^(3))/( 1+x^(2)) dx is equal to a) 3 ( tan^(-1) x ...

    Text Solution

    |

  5. inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

    Text Solution

    |

  6. int ( sin ( log x) + cos ( log x ) dx is equal to

    Text Solution

    |

  7. int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

    Text Solution

    |

  8. int (f'(x))/( f(x) log(f(x)))dx is equal to

    Text Solution

    |

  9. intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/...

    Text Solution

    |

  10. int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^...

    Text Solution

    |

  11. int ((1-sin x )/( 1- cos x )) e^(x) dx is equal to

    Text Solution

    |

  12. int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

    Text Solution

    |

  13. If int(0)^(40) (dx)/( 2x +1) = log k, then the value of k is

    Text Solution

    |

  14. int(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal to

    Text Solution

    |

  15. If int(0)^(k) ( 1)/(9x^(2) + 1) dx = ( pi )/( 12) , then k is equal to

    Text Solution

    |

  16. int(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

    Text Solution

    |

  17. The value of int(pi//6)^(pi//3) (1)/( sin 2x) dx is

    Text Solution

    |

  18. int(-1)^(0) (dx)/( x^(2) + 2x+ 2) is equal to

    Text Solution

    |

  19. int(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

    Text Solution

    |

  20. int(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

    Text Solution

    |