Home
Class 12
MATHS
int ((tan^(-1) x )^(3))/( 1+x^(2)) dx i...

`int ((tan^(-1) x )^(3))/( 1+x^(2)) dx ` is equal to a) `3 ( tan^(-1) x )^(2) +C` b) `(1)/(4) ( tan^(-1)x)^(4) +C` c) `( tan^(-1) x)^(4) + C` d) none of these

A

`3 ( tan^(-1) x )^(2) +C`

B

`(1)/(4) ( tan^(-1)x)^(4) +C`

C

`( tan^(-1) x)^(4) + C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{(\tan^{-1} x)^3}{1 + x^2} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, the derivative of \( t \) with respect to \( x \) is given by: \[ \frac{dt}{dx} = \frac{1}{1 + x^2} \] This implies: \[ dx = (1 + x^2) \, dt \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \frac{(\tan^{-1} x)^3}{1 + x^2} \, dx = \int t^3 \, dt \] ### Step 3: Integrate Now we can integrate \( t^3 \): \[ \int t^3 \, dt = \frac{t^4}{4} + C \] ### Step 4: Back Substitute Now, we substitute back \( t = \tan^{-1} x \): \[ \frac{(\tan^{-1} x)^4}{4} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{(\tan^{-1} x)^3}{1 + x^2} \, dx = \frac{1}{4} (\tan^{-1} x)^4 + C \] ### Conclusion The correct option is: b) \( \frac{1}{4} (\tan^{-1} x)^4 + C \) ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

intx/(4+x^4)\ dx is equal to 1/4tan^(-1)x^2 (b) 1/4tan^(-1)((x^2)/2) (c) 1/2tan^(-1)((x^2)/2) (d) none of these

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

Integration of 1/(1+((log)_e x)^2) with respect to (log)_e x is (tan^(-1)((log)_e x)/x)+C (b) tan^(-1)((log)_e x)+C (c) (tan^(-1)x)/x+C (d) none of these

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

(3) int(dx)/(x^(2)+a^(2))=(1)/(a)tan^(-1)(x/a)+C