Home
Class 12
MATHS
inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is e...

`inte^(3 log x ) (x^(4)+ 1) ^(-1) dx` is equal to

A

`(1)/( 4) log ( x^(4) + 1) + C`

B

`- ( 1)/( 4) log ( x^(4) + 1) +C`

C

`log (x^(4) + 1) + C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{3 \log x} (x^4 + 1)^{-1} \, dx \), we can follow these steps: ### Step 1: Simplify \( e^{3 \log x} \) Using the property of logarithms, we know that \( e^{a \log b} = b^a \). Therefore, we can rewrite \( e^{3 \log x} \) as: \[ e^{3 \log x} = x^3 \] ### Step 2: Rewrite the integral Now, substituting \( e^{3 \log x} \) in the integral, we have: \[ \int e^{3 \log x} (x^4 + 1)^{-1} \, dx = \int \frac{x^3}{x^4 + 1} \, dx \] ### Step 3: Use substitution Let’s use the substitution: \[ t = x^4 + 1 \] Then, differentiating both sides gives: \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] ### Step 4: Substitute in the integral Now we can substitute \( dx \) in the integral: \[ \int \frac{x^3}{x^4 + 1} \, dx = \int \frac{x^3}{t} \cdot \frac{dt}{4x^3} = \int \frac{1}{4t} \, dt \] ### Step 5: Integrate Now, we can integrate: \[ \int \frac{1}{4t} \, dt = \frac{1}{4} \ln |t| + C \] ### Step 6: Substitute back for \( t \) Now, substituting back for \( t \): \[ \frac{1}{4} \ln |x^4 + 1| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int e^{3 \log x} (x^4 + 1)^{-1} \, dx = \frac{1}{4} \ln(x^4 + 1) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int(x^(4)+1)/(x^(6)+1)dx is equal to

int(x^(3))/(x+1)dx is equal to

int(1)/(x(x^(4)-1))dx is equal to

The value of int x log x (log x - 1) dx is equal to

int_0^1log(1/x-1)dx is equal to

int x ^(x)((ln x )^(2) +lnx+1/x) dx is equal to:

int ( sin ( log x) + cos ( log x ) dx is equal to

int log ( 1 + x^(2)) dx

int_2^4 1/x dx is equal to

int[(x)^(1//3)-(1)/((x^())^(1//3))]dx is equal to :