Home
Class 12
MATHS
int (f'(x))/( f(x) log(f(x)))dx is equal...

`int (f'(x))/( f(x) log(f(x)))dx` is equal to

A

`f(x) log (f(x)) +C`

B

`log(log(f(x))) +C`

C

`(f(x))/(log(f(x)) ) +C`

D

`(1)/( log(log(f(x))))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{f'(x)}{f(x) \log(f(x))} \, dx, \] we can use substitution. Let's go through the steps in detail. ### Step 1: Substitution Let \[ t = \log(f(x)). \] Then, we differentiate \(t\) with respect to \(x\): \[ dt = \frac{1}{f(x)} f'(x) \, dx. \] This implies that \[ f'(x) \, dx = f(x) \, dt. \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral using our substitution: \[ \int \frac{f'(x)}{f(x) \log(f(x))} \, dx = \int \frac{f(x) \, dt}{f(x) \cdot t} = \int \frac{dt}{t}. \] ### Step 3: Integrate The integral of \(\frac{1}{t}\) is: \[ \int \frac{dt}{t} = \log |t| + C, \] where \(C\) is the constant of integration. ### Step 4: Substitute Back Now, we substitute back \(t = \log(f(x))\): \[ \log |t| + C = \log |\log(f(x))| + C. \] ### Final Answer Thus, the final answer is: \[ \log |\log(f(x))| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of int [f(x)g''(x) - f''(x)g(x)] dx is equal to

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c int((1)/(lnx)-(1)/((lnx)^(2)))dx is equal to

If f (6-x ) =f (x), for all then 1/5 int _(2)^(3) x [f (x) + f (x+1)]dx is equal to :

find f '(x) if f(x)= log(logx)

int_(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to: