Home
Class 12
MATHS
intx^(3) log x dx is equal to A) (x^(4) ...

`intx^(3) log x dx` is equal to A) `(x^(4) log x )/( 4) + C` B) `(x^(4))/( 8) ( log x - ( 4)/( x^(2)))+C` C) `(x^(4))/( 16) ( 4 log x -1) +C` D) `(x^(4))/( 16) ( 4 log x +1) + C`

A

`(x^(4) log x )/( 4) + C`

B

`(x^(4))/( 8) ( log x - ( 4)/( x^(2)))+C`

C

`(x^(4))/( 16) ( 4 log x -1) +C`

D

`(x^(4))/( 16) ( 4 log x +1) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^3 \log x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \log x \) (which we will differentiate) - \( dv = x^3 \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we compute \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{x} \, dx \] - Integrate \( dv \): \[ v = \int x^3 \, dx = \frac{x^4}{4} \] ### Step 3: Apply the Integration by Parts Formula Now we apply the integration by parts formula: \[ \int x^3 \log x \, dx = uv - \int v \, du \] Substituting \( u \), \( du \), \( v \): \[ = \log x \cdot \frac{x^4}{4} - \int \frac{x^4}{4} \cdot \frac{1}{x} \, dx \] This simplifies to: \[ = \frac{x^4 \log x}{4} - \frac{1}{4} \int x^3 \, dx \] ### Step 4: Compute the Remaining Integral Now we compute the integral \( \int x^3 \, dx \): \[ \int x^3 \, dx = \frac{x^4}{4} \] Substituting this back into our equation: \[ = \frac{x^4 \log x}{4} - \frac{1}{4} \cdot \frac{x^4}{4} \] This simplifies to: \[ = \frac{x^4 \log x}{4} - \frac{x^4}{16} \] ### Step 5: Combine the Terms Now, we can combine the terms: \[ = \frac{x^4}{16} \left( 4 \log x - 1 \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int x^3 \log x \, dx = \frac{x^4}{16} (4 \log x - 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^(x))/( 1+log a ) + C C) ( ae )^(x) +C D) ((ae)^(x))/( log ae) +C

int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ( log x )^(6))/( 6) + C c) ((log x )^(6))/( 3x^(2)) + C d) none of these

inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4)) dx

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

int(x^3)/(x+1)\ dx is equal to (a) x+(x^2)/2+(x^3)/3-log|1-x|+C (b) x+(x^2)/2-(x^3)/3-log|1-x|+C (c) x-(x^2)/2-(x^3)/3-log|1+x|+C (d) x-(x^2)/2+(x^3)/3-log|1+x|+C

int(x dx)/((x-1)(x-2) equal(A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2)/(x-1)|+C (C) log|((x-1)^2)/(x-2)|+C (D) log|(x-1)(x-2)|+C

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .