Home
Class 12
MATHS
int ((1-sin x )/( 1- cos x )) e^(x) dx i...

`int ((1-sin x )/( 1- cos x )) e^(x) dx` is equal to

A

` - e^(x) tan""( x)/( 2) + C`

B

`- e^(x) cot ""(x)/(2) +C`

C

`- ( 1)/( 2) e^(x) tan""(x)/(2) +C`

D

`- (1)/(2) e^(x) cot ""(x)/(2) +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 - \sin x}{1 - \cos x} e^x \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression: \[ \frac{1 - \sin x}{1 - \cos x} \] Using the half-angle identities, we can rewrite \(1 - \sin x\) and \(1 - \cos x\): \[ 1 - \sin x = 1 - 2 \sin \frac{x}{2} \cos \frac{x}{2} = (1 - \sin \frac{x}{2})^2 \] \[ 1 - \cos x = 2 \sin^2 \frac{x}{2} \] Thus, we can rewrite the integrand: \[ \frac{1 - \sin x}{1 - \cos x} = \frac{(1 - \sin \frac{x}{2})^2}{2 \sin^2 \frac{x}{2}} \] ### Step 2: Separate the integrand We can separate the terms: \[ \frac{(1 - \sin \frac{x}{2})^2}{2 \sin^2 \frac{x}{2}} = \frac{1}{2} \cdot \frac{(1 - \sin \frac{x}{2})^2}{\sin^2 \frac{x}{2}} \] This can be rewritten as: \[ \frac{1}{2} \left( \cot^2 \frac{x}{2} - 2 \cot \frac{x}{2} + 1 \right) \] ### Step 3: Write the integral Now we write the integral: \[ \int \frac{1 - \sin x}{1 - \cos x} e^x \, dx = \frac{1}{2} \int \left( \cot^2 \frac{x}{2} - 2 \cot \frac{x}{2} + 1 \right) e^x \, dx \] ### Step 4: Integrate using integration by parts We can separate the integral into three parts: \[ \frac{1}{2} \left( \int \cot^2 \frac{x}{2} e^x \, dx - 2 \int \cot \frac{x}{2} e^x \, dx + \int e^x \, dx \right) \] ### Step 5: Solve the integrals 1. The integral \( \int e^x \, dx = e^x + C \). 2. For \( \int \cot \frac{x}{2} e^x \, dx \), we apply integration by parts: - Let \( u = \cot \frac{x}{2} \) and \( dv = e^x \, dx \). - Then \( du = -\frac{1}{2} \csc^2 \frac{x}{2} \, dx \) and \( v = e^x \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives: \[ \cot \frac{x}{2} e^x - \int e^x \left(-\frac{1}{2} \csc^2 \frac{x}{2}\right) \, dx \] ### Step 6: Combine results After performing the necessary integrations and simplifications, we find: \[ \int \frac{1 - \sin x}{1 - \cos x} e^x \, dx = -e^x \cot \frac{x}{2} + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1 - \sin x}{1 - \cos x} e^x \, dx = -e^x \cot \frac{x}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int( x + sin x )/( 1+ cos x) dx is equal to

int cos (log_e x)dx is equal to

int(x+1)^(2)e^(x)dx is equal to

int(1)/(cos x - sin x )dx is equal to

int ( sin^(4) x - cos ^(4) x ) dx is equal to

int ( sin ( log x) + cos ( log x ) dx is equal to

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

int sqrt(e^(x)-1)dx is equal to

int(sin x)/( sqrt(1+cos x))dx=?

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to