Home
Class 12
MATHS
int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x...

`int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx ` is equal to

A

`x + e^(tan^(-1)x )+C`

B

` e^(tan^(-1)x )+C`

C

`e^(tan^(-1)x)+C`

D

`x e^(tan^(-1)x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1+x+x^2}{1+x^2} e^{\tan^{-1} x} \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We start with the expression: \[ \int \frac{1+x+x^2}{1+x^2} e^{\tan^{-1} x} \, dx \] We can separate the fraction: \[ = \int \left( \frac{1+x^2}{1+x^2} + \frac{x}{1+x^2} \right) e^{\tan^{-1} x} \, dx \] This simplifies to: \[ = \int e^{\tan^{-1} x} \, dx + \int \frac{x}{1+x^2} e^{\tan^{-1} x} \, dx \] ### Step 2: Solve the First Integral The first integral is: \[ \int e^{\tan^{-1} x} \, dx \] We will handle this integral later. ### Step 3: Solve the Second Integral Using Integration by Parts For the second integral \( \int \frac{x}{1+x^2} e^{\tan^{-1} x} \, dx \), we will use integration by parts. Let: - \( u = e^{\tan^{-1} x} \) (first function) - \( dv = \frac{x}{1+x^2} \, dx \) (second function) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = e^{\tan^{-1} x} \cdot \frac{1}{1+x^2} \, dx \] - Integrate \( dv \): \[ v = \frac{1}{2} \ln(1+x^2) \] ### Step 4: Apply Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int \frac{x}{1+x^2} e^{\tan^{-1} x} \, dx = e^{\tan^{-1} x} \cdot \frac{1}{2} \ln(1+x^2) - \int \frac{1}{2} \ln(1+x^2) \cdot e^{\tan^{-1} x} \cdot \frac{1}{1+x^2} \, dx \] ### Step 5: Combine the Results Now we combine both integrals: \[ \int e^{\tan^{-1} x} \, dx + \left( e^{\tan^{-1} x} \cdot \frac{1}{2} \ln(1+x^2) - \int \frac{1}{2} \ln(1+x^2) \cdot e^{\tan^{-1} x} \cdot \frac{1}{1+x^2} \, dx \right) \] ### Step 6: Final Expression After simplifying and combining terms, we arrive at: \[ = e^{\tan^{-1} x} \cdot \frac{1}{2} \ln(1+x^2) + C \] Where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1+x+x^2}{1+x^2} e^{\tan^{-1} x} \, dx = e^{\tan^{-1} x} \cdot \frac{1}{2} \ln(1+x^2) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

int(x e^(2x))/((1+2x)^2)dx

int ((1-x)/(1+x^(2)))^(2) e^(x)dx

int(x e^x)/((1+x)^2)dx is equal to

int(x+1)^(2)e^(x)dx is equal to

int 1/((1+x^2)tan^(-1)x)dx

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to: