Home
Class 12
MATHS
If int(0)^(40) (dx)/( 2x +1) = log k, th...

If `int_(0)^(40) (dx)/( 2x +1) = log k`, then the value of k is

A

3

B

`(9)/(2)`

C

9

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{40} \frac{dx}{2x + 1} = \log k \), we will follow these steps: ### Step 1: Substitution Let \( t = 2x + 1 \). Then, we differentiate to find \( dx \): \[ dt = 2dx \quad \Rightarrow \quad dx = \frac{dt}{2} \] ### Step 2: Change the limits of integration Now, we need to change the limits of integration according to our substitution: - When \( x = 0 \): \[ t = 2(0) + 1 = 1 \] - When \( x = 40 \): \[ t = 2(40) + 1 = 81 \] ### Step 3: Rewrite the integral Now we can rewrite the integral in terms of \( t \): \[ \int_{0}^{40} \frac{dx}{2x + 1} = \int_{1}^{81} \frac{1}{t} \cdot \frac{dt}{2} = \frac{1}{2} \int_{1}^{81} \frac{dt}{t} \] ### Step 4: Evaluate the integral The integral \( \int \frac{dt}{t} \) is \( \log t \). Therefore, we have: \[ \frac{1}{2} \int_{1}^{81} \frac{dt}{t} = \frac{1}{2} \left[ \log t \right]_{1}^{81} = \frac{1}{2} \left( \log 81 - \log 1 \right) \] Since \( \log 1 = 0 \): \[ = \frac{1}{2} \log 81 \] ### Step 5: Simplify using properties of logarithms Using the property of logarithms \( \log a^b = b \log a \): \[ \frac{1}{2} \log 81 = \log 81^{1/2} = \log 9 \] ### Step 6: Set the equation equal to \( \log k \) From the problem statement, we have: \[ \log k = \log 9 \] ### Step 7: Solve for \( k \) Since the logarithms are equal, we can conclude: \[ k = 9 \] ### Final Answer Thus, the value of \( k \) is \( 9 \). ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

If int_(20)^(40)(sinx)/(sinx+sin(60-x))dx=k , then the value of (k)/(4) is equal to

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to

If int_(0)^(36) (1)/(2x+9)dx =log k , is equal to

If int_(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

int_(1)^(2) (dx)/(x(1+log x)^(2))

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C , then the value of k is

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If the value of the integral I=int_((pi)/(4))^((pi)/(3))" max "(sinx, tanx)dx is equal to ln k, then the value of k^(2) is equal to