Home
Class 12
MATHS
int(0)^(pi//2) ( sin x cos x )/( 1+ sin ...

`int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx` is equal to

A

`3 - log 12`

B

`1- log 2`

C

`1+ log 2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \sin x} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let \[ t = 1 + \sin x. \] Then, the derivative of \(t\) with respect to \(x\) is \[ dt = \cos x \, dx. \] ### Step 2: Change of Limits When \(x = 0\), \[ t = 1 + \sin(0) = 1. \] When \(x = \frac{\pi}{2}\), \[ t = 1 + \sin\left(\frac{\pi}{2}\right) = 2. \] ### Step 3: Express \(\sin x\) in terms of \(t\) From the substitution \(t = 1 + \sin x\), we can express \(\sin x\) as \[ \sin x = t - 1. \] ### Step 4: Rewrite the Integral Now we can rewrite the integral in terms of \(t\): \[ I = \int_{1}^{2} \frac{(t - 1) \cos x}{t} \, dt. \] Since \(dt = \cos x \, dx\), we can replace \(\cos x \, dx\) with \(dt\): \[ I = \int_{1}^{2} \frac{(t - 1)}{t} \, dt. \] ### Step 5: Simplify the Integral We can simplify the integrand: \[ \frac{(t - 1)}{t} = 1 - \frac{1}{t}. \] Thus, the integral becomes: \[ I = \int_{1}^{2} \left(1 - \frac{1}{t}\right) dt. \] ### Step 6: Integrate Now we can integrate: \[ I = \int_{1}^{2} 1 \, dt - \int_{1}^{2} \frac{1}{t} \, dt. \] Calculating these integrals: \[ \int_{1}^{2} 1 \, dt = [t]_{1}^{2} = 2 - 1 = 1, \] and \[ \int_{1}^{2} \frac{1}{t} \, dt = [\ln t]_{1}^{2} = \ln(2) - \ln(1) = \ln(2). \] ### Step 7: Combine Results Putting it all together, we have: \[ I = 1 - \ln(2). \] ### Final Answer Thus, the value of the integral is: \[ \boxed{1 - \ln(2)}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx

int( x + sin x )/( 1+ cos x) dx is equal to

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

int_(0)^(pi) x sin x cos^(2)x\ dx

Using properties of definite integrals, evaluate: int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx

int_(0)^(pi) [2sin x]dx=

int(sin x+cos x)/(sin(x -alpha))dx is equal to