Home
Class 12
MATHS
The value of int(pi//6)^(pi//3) (1)/( si...

The value of `int_(pi//6)^(pi//3) (1)/( sin 2x) dx` is

A

`log 3`

B

`(1)/(2) log 2`

C

`(1)/(2) log 3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\sin 2x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral using the identity for sine: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can express the integral as: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\sin 2x} \, dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{2 \sin x \cos x} \, dx \] ### Step 2: Simplify the Integral Next, we can simplify the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{2 \sin x \cos x} \, dx = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\sin x \cos x} \, dx \] Using the identity \( \frac{1}{\sin x \cos x} = \frac{2}{\sin 2x} \), we can rewrite the integral: \[ I = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{2}{\sin 2x} \, dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\sin 2x} \, dx \] ### Step 3: Substitution Now we will perform a substitution. Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \). The limits change as follows: - When \( x = \frac{\pi}{6} \), \( t = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \) - When \( x = \frac{\pi}{3} \), \( t = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \) Thus, the integral becomes: \[ I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{2t} \cdot \frac{1}{1 + t^2} \, dt \] ### Step 4: Integration Now we can integrate: \[ I = \frac{1}{2} \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{t} \, dt \] This integral evaluates to: \[ I = \frac{1}{2} \left[ \ln |t| \right]_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} = \frac{1}{2} \left( \ln(\sqrt{3}) - \ln\left(\frac{1}{\sqrt{3}}\right) \right) \] Using the property of logarithms \( \ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) \): \[ I = \frac{1}{2} \left( \ln(\sqrt{3}) + \ln(\sqrt{3}) \right) = \frac{1}{2} \cdot 2 \ln(\sqrt{3}) = \ln(\sqrt{3}) \] ### Step 5: Final Answer Thus, the value of the integral is: \[ I = \ln(\sqrt{3}) = \frac{1}{2} \ln(3) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3) sin(3x)dx=

The value of int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx is

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sin x))dx

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is