Home
Class 12
MATHS
int(-1)^(0) (dx)/( x^(2) + 2x+ 2) is equ...

`int_(-1)^(0) (dx)/( x^(2) + 2x+ 2)` is equal to

A

0

B

`(pi)/(2)`

C

`(pi)/(4)`

D

`-(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{0} \frac{dx}{x^2 + 2x + 2} \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int_{-1}^{0} \frac{dx}{x^2 + 2x + 2} \] ### Step 2: Complete the square in the denominator We need to rewrite the quadratic expression in the denominator in a completed square form. The expression \( x^2 + 2x + 2 \) can be rewritten as: \[ x^2 + 2x + 2 = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 \] Thus, we have: \[ I = \int_{-1}^{0} \frac{dx}{(x + 1)^2 + 1} \] ### Step 3: Make a substitution Let \( t = x + 1 \). Then, \( dt = dx \). When \( x = -1 \), \( t = 0 \), and when \( x = 0 \), \( t = 1 \). Therefore, the limits of integration change from \( -1 \) to \( 0 \) for \( x \) to \( 0 \) to \( 1 \) for \( t \): \[ I = \int_{0}^{1} \frac{dt}{t^2 + 1} \] ### Step 4: Recognize the standard integral The integral \( \int \frac{dt}{t^2 + 1} \) is a standard integral that evaluates to: \[ \int \frac{dt}{t^2 + 1} = \tan^{-1}(t) \] Thus, we can write: \[ I = \left[ \tan^{-1}(t) \right]_{0}^{1} \] ### Step 5: Evaluate the integral at the limits Now we evaluate the definite integral: \[ I = \tan^{-1}(1) - \tan^{-1}(0) \] We know that: \[ \tan^{-1}(1) = \frac{\pi}{4} \quad \text{and} \quad \tan^{-1}(0) = 0 \] So, we have: \[ I = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int_(0)^(1) (1)/(x^(2) +2x+3)dx

The value of the integral int_(0)^(8)(x^(2))/(x^(2)+8x+32) dx is equal to

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

int_(0)^(1) ( x^(4) + 1)/( x^(2) + 1) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to