Home
Class 12
MATHS
int(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is...

`int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx` is equal to

A

`(pi)/( 4)`

B

`(pi^(2))/( 32)`

C

1

D

`(pi^(2))/( 16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{\tan^{-1} x}{1+x^2} \, dx \), we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int_{0}^{1} \frac{\tan^{-1} x}{1+x^2} \, dx \] ### Step 2: Substitution We notice that the derivative of \( \tan^{-1} x \) is \( \frac{1}{1+x^2} \). Therefore, we can use the substitution: \[ t = \tan^{-1} x \implies dt = \frac{1}{1+x^2} \, dx \] This implies that: \[ dx = (1+x^2) \, dt \] ### Step 3: Change the Limits Next, we need to change the limits of integration. When \( x = 0 \): \[ t = \tan^{-1}(0) = 0 \] When \( x = 1 \): \[ t = \tan^{-1}(1) = \frac{\pi}{4} \] Thus, the limits change from \( x: 0 \to 1 \) to \( t: 0 \to \frac{\pi}{4} \). ### Step 4: Rewrite the Integral Substituting these into the integral gives: \[ I = \int_{0}^{\frac{\pi}{4}} t \, dt \] ### Step 5: Integrate Now we can integrate: \[ I = \left[ \frac{t^2}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{(\frac{\pi}{4})^2}{2} - \frac{0^2}{2} \] Calculating this gives: \[ I = \frac{\frac{\pi^2}{16}}{2} = \frac{\pi^2}{32} \] ### Step 6: Conclusion Thus, the value of the integral is: \[ \boxed{\frac{\pi^2}{32}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

int_(0)^(1) ( x^(4) + 1)/( x^(2) + 1) dx is equal to

int _(0)^(1) (tan ^(-1)x)/(x ) dx =

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to